Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mikkonen RS"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Influence of "live high-train low" on hemoglobin mass and post-exercise hepcidin response in female endurance athletes
    (Springer-Verlag GmbH, 2025-04-10) Kuorelahti T; Ihalainen JK; Linnamo V; Badenhorst C; Kettunen O; Mikkonen RS
    Purpose: The aim of this study was to investigate the effects of a 21-day ‘live high-train low’ (LHTL) intervention on hemoglobin mass (Hbmass) and post-exercise hepcidin response in female endurance athletes. Methods: 15 national to international level female endurance athletes completed either the LHTL intervention in normobaric hypoxia (2500 m, ~ 18 h·day−1, INT, n = 7) or lived and trained in normoxia for the same duration (CON, n = 8). Tests were conducted before (PRE) and within two days after (POST) the intervention including Hbmass measurements via a carbon monoxide rebreathing method and a roller skiing skate test. Venous blood samples were collected at rest, 0, and 3 h after the aerobic exercise to test for changes in serum hepcidin, ferritin, and interleukin-6 (IL-6). Results: Normobaric hypoxia increased Hbmass (3.3 ± 1.8%, p < 0.001) in INT, while no changes were observed in CON. There were no changes in performance parameters, resting levels of hepcidin, or IL-6 from PRE to POST, but ferritin decreased in both groups (p = 0.040). Hepcidin increased 0 h post-exercise in PRE for INT (p = 0.029) and both 0 and 3 h post-exercise for CON (p = 0.001, p = 0.019). In POST elevated post-exercise hepcidin was only observed in CON (0 h, p = 0.003; 3 h, p = 0.008). Conclusions: 21-day LHTL increased Hbmass and suppressed post-exercise hepcidin response after intensive aerobic exercise. This suggests that prolonged hypoxia may induce an acute physiological response that supports iron absorption within a few days following hypoxic exposure, which may assist in achieving the aerobic adaptations sought from prolonged hypoxic training camps.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings