Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mills S"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Biodiversity of the Kermadec Islands and offshore waters of the Kermadec Ridge: report of a coastal, marine mammal and deep-sea survey (TAN1612)
    (Ministry for Primary Industries, 2017-01-30) Clark MR; Trnski T; Constantine R; Aguirre JD; Barker J; Betty E; Bowden DA; Connell A; Duffy C; George S; Hannam S; Liggins LJ; Middleton C; Mills S; Pallentin A; Reikkola L; Sampey A; Sewell M; Spong K; Stewart A; Stewart R; Struthers C; van Oosterom L
  • Loading...
    Thumbnail Image
    Item
    Stratigraphy and lithosedimentological properties of subplinian eruptions from Mt. Taranaki, New Zealand, encompassed by the Ngaere and Pungarehu edifice collapses
    (Taylor and Francis Group, 2025-01-29) Mills S; Procter J; Zernack A; Mead S
    The sudden removal of large portions of a volcanic edifice through collapse can cause depressurisation in the subvolcanic magmatic system, influencing the nature of subsequent eruptions. At Mt. Taranaki, edifice failure has occurred frequently and at different timescales throughout the volcanic history, forming a broad pattern of cyclic collapse and regrowth. About 20–30,000 years ago, Mt. Taranaki experienced two such cycles in short succession, emplacing the 27.3 ka Ngaere and the 24.8 ka Pungarehu debris-avalanche deposits, which were preceded and followed by a sequence of twenty-eight closely spaced tephra deposits known as the Poto and Paetahi Formations. Here, we reconstruct the tephrastratigraphic framework of the Poto and Paetahi Formations, revealing a minimum total eruptive volume of 3 km3. While eruptions directly following edifice failure were larger compared to those prior to collapse, this 4,000-year long eruptive period was characterised by consistently large subplinian eruptions. In contrast, large explosive events within the Holocene sequence are less frequent, with more multi-phase periods of effusive and explosive activity recorded. Our new data highlights the need to include longer-term eruptive records in volcanic hazard modelling since the most recent volcanic history might not cover the full nature of volcanic processes occurring at long-lived stratovolcanoes.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify