Browsing by Author "Moretto, Giovanna Lucia"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemThe electrochemical deposition of mercury on glassy carbon electrodes : a thesis in partial fulfilment of the requirements for the degree of Masters in Science in Chemistry at Massey University, Palmerston North, New Zealand(Massey University, 2000) Moretto, Giovanna LuciaThe mechanism for the reduction of Hg2+ on glassy carbon in aqueous acetate and nitrate electrolyte was studied. This deposition process is of interest due to the wide electroanalytical applications of mercury thin film electrodes. It was found in the early stages of this work that even though the use of these electrodes is wide spread, there has been little investigation into how the deposition stage occurs. The electrochemical techniques used were cyclic voltammetry and chronoamperometry. A range of experiments were undertaken including concentration dependence, rotation dependence, scan rate dependence, electrochemical-cleaning, and the dependence of the length of time left at open potential. The acetate experiments were carried out at a constant pH of 5.0 and all experiments were carried out at a constant temperature of 20°C. Significant dependence was established in the cyclic voltammetry work for all the experimental conditions. In acetate electrolyte the development of peaks C1 and C2 were seen after cycling of the electrode without mechanical-cleaning. A shift in the reduction potential from a mechanically-cleaned electrode cycle to the next cycle without intervening cleaning was also observed. Two new anodic peaks, A2 and A3, were also seen in acetate electrolyte. At high concentrations cathodic current spikes were observed at the extreme cathodic limits of the voltammograms. The response that was observed in nitrate electrolyte was dissimilar to that in acetate. The shift in reduction potential, current spikes, peaks C1, C2, A2, and A3, were never observed for the deposition of Hg2+ in nitrate electrolyte. The chronoamperometry work on microelectrodes led to a number of new phenomena. Transients that were obtained from these experiments lead to the development of a quantitative nucleation and growth model for the growth of hemispherical mercury droplets. At the onset of reduction the transients follow a t2 function which is in accordance with surface area dependence growth of the droplet. However, after a short length of time, the transients start to follow a function of t 1/2, which is suggestive of perimeter growth control. This is assumed to be due to the formation of a semi-passivating Hg2(OAc)2 film over the mercury droplet where Hg2+2 forms as a result of a disproportionation reaction. A qualitative model was also developed to account for the observations of both the microelectrode results and most of the features seen in the cyclic voltammetry work.
- ItemA study into the use of ion beam analysis for the quantitative and qualitative analysis of conducting polymers : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Chemistry at Massey University, Palmerston North, New Zealand(Massey University, 2004) Moretto, Giovanna LuciaSince their discovery in the late 1970s conducting polymers have become increasingly used materials in many applications. They are utilised for their conductivity and/or their electroactive properties. These applications include sensor technologies, actuators, and battery materials. The properties of conducting polymers rely on the extent of the reduction / oxidation or redox state, and hence the dopant levels, of the materials. The aim of this work was to investigate the use of the Ion Beam Analysis (IBA) techniques Rutherford Backscattering Spectroscopy (RBS), and Proton Induced X-ray Emission (PIXE) for the analysis of 'soft' organic materials, in particular, conducting polymers. These IBA techniques are not new, as they have been extensively used for the characterisation of many inorganic, 'hard', materials such as aluminium oxide and silicon oxynitride. While they have been used to alter the molecular structure, and hence the properties of conducting polymers in the past, little to no research has explored the use of ion beams as a tool for the characterisation of these materials. Conducting polymers can either be prepared chemically or electrochemically. They are predominantly prepared in an oxidised state and this charge is balanced by negatively charged counter ions. In this work, the conducting polymers were formed electrochemically by deposition onto support materials at constant electrode potential. The number of counter ions required to balance the polymer chain depends on the type of conducting polymer formed and extent of oxidation. Issues such as the influence of the support material and extent of polymer oxidation on the extent of counter ions through the polymer films are of importance. Gaining knowledge of the dispersion of counter ions may provide new insights into the redox mechanisms for conductive polymers. Complex bis terthiophene porphyrin conducting polymers were prepared and investigated for the uptake of zinc into the freebase porphyrin unit after polymerisation by acquiring elemental depth profiles using RBS analysis. Issues such as the influence of the support material and extent of polymer oxidation on the extent of counter ions through the polymer films were found to be of importance. Gaining knowledge of the extent of counter ions provides new insights into the redox mechanisms for conductive polymers. The results were compared to those obtained for a sample where zinc was coordinated to the porphyrin prior to the polymerisation process. Unexpected high concentrations of both nitrogen and oxygen were found, which were interpreted to be due to entrapped cations originating from the electrolyte ((Bu)4N+), together with trapped water molecules, within the polymer films. The chlorine depth profiling assisted with understanding the extent of the perchlorate counter ion throughout the polymer films. The combination of both RBS and PIXE demonstrated that trace element impurities can be detected using ion beam analysis, which other analytical techniques are unable to do. A series of polypyrrole films incorporating a range of counter ions were prepared as model compounds for study in the second section of this work. RBS and PIXE techniques were used to evaluate film homogeneity with respect to depth and to infer the counter ion / pyrrole unit ratio for each of the six PPy film formed. RBS was also used to characterise a series of terthiophene-ferrocene based conducting co-polymers. The ratio of co-polymer monomer to terthiophene-ferrocene monomers and the dopant levels for the polymers were determined using a RBS deconvolution method developed in this study. This new method can be extended for characterization of a wide range of organic polymers. The limitations of RBS for the analysis of these soft materials were identified. The advantage that RBS offers over other analytical techniques is that it provides a means for low atomic number element depth profiling in these materials.