Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Morley J"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The Koja Web Mapping Application for Context-sensitive Natural Language Spatial Querying
    (CEUR Team, 2023-01-01) Aflaki N; Stock K; Jones CB; Guesgen H; Fukuzawa Y; Morley J; Hu X; Hu Y; Resch B; Kersten J; Stock K
    The locations of objects are often described in natural language relative to some other object using vague and context-sensitive spatial relation terms (e.g. theatre near Trafalgar Square). Koja is a web map application that predicts the distance between a location and reference object based on the spatial relation term specified by the user and language and contextual features. That distance is used to retrieve objects of the specified type within a range of the distance. They are displayed through a map interface to make the process more intuitive and user-friendly.
  • Loading...
    Thumbnail Image
    Item
    What Do You Mean You're in Trafalgar Square? Comparing Distance Thresholds for Geospatial Prepositions
    (Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022-09-01) Aflaki N; Stock K; Jones CB; Guesgen H; Morley J; Fukuzawa Y; Ishikawa T; Fabrikant SI; Winter S
    Natural language location descriptions frequently describe object locations relative to other objects (the house near the river). Geospatial prepositions (e.g.near) are a key element of these descriptions, and the distances associated with proximity, adjacency and topological prepositions are thought to depend on the context of a specific scene. When referring to the context, we include consideration of properties of the relatum such as its feature type, size and associated image schema. In this paper, we extract spatial descriptions from the Google search engine for nine prepositions across three locations, compare their acceptance thresholds (the distances at which different prepositions are acceptable), and study variations in different contexts using cumulative graphs and scatter plots. Our results show that adjacency prepositions next to and adjacent to are used for a large range of distances, in contrast to beside; and that topological prepositions in, at and on can all be used to indicate proximity as well as containment and collocation. We also found that reference object image schema influences the selection of geospatial prepositions such as near and in.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings