Browsing by Author "Mróz MJ"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Analyses of anomalous lensing events detected from the UKIRT microlensing survey(EDP Sciences, 2025-04-14) Han C; Zang W; Udalski A; Lee C-U; Bond IA; Wen Y; Ma B; Albrow MD; Chung S-J; Gould A; Hwang K-H; Jung YK; Ryu Y-H; Shvartzvald Y; Shin I-G; Yang H; Yee JC; Kim D; Kim D-J; Cha S-M; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Mróz P; Szymański MK; Skowron J; Poleski R; Soszyński I; Pietrukowicz P; Kozłowski S; Rybicki KA; Iwanek P; Ulaczyk K; Wrona M; Gromadzki M; Mróz MJ; Abe F; Bando K; Bennett DP; Bhattacharya A; Fukui A; Hamada R; Hamada S; Hamasaki N; Hirao Y; Ishitani Silva S; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Terry SK; Tristram PJ; Vandorou A; Yama HAims. The United Kingdom Infrared Telescope (UKIRT) microlensing survey was conducted over four years, from 2016 to 2019, with the goal of serving as a precursor to future near-infrared microlensing surveys. Focusing on stars in the Galactic center and utilizing near-infrared passbands, the survey identified approximately one thousand microlensing events, 27 of which displayed anomalies in their light curves. This paper presents an analysis of these anomalous events, aiming to uncover the underlying causes of the observed anomalies. Methods. The events were analyzed under various configurations, considering the potential binarity of both the lens and the source. For 11 events that were additionally observed by other optical microlensing surveys, including those conducted by the OGLE, KMTNet, and MOA collaborations, we incorporated their data into our analysis. Results. Among the reported anomalous events, we revealed the nature of 24 events except for three events, in which one was likely to be a transient variable, and two were difficult to accurately characterize their nature due to the limitations of the available data. We confirmed the binary lens nature of the anomalies in 22 events. Among these, we verified the earlier discovery that the companion in the binary lens system UKIRT11L is a planetary object. Accurately describing the anomaly in UKIRT21 required a model that accounted for the binarity of both the lens and the source. For two events UKIRT01 and UKIRT17, the anomalies could be interpreted using either a binary-source or a binary-lens model. For the UKIRT05, it was found that accounting for higher-order effects induced by the orbit al motions of both Earth and the binary lens was crucial. With the measured microlensing parallax togeter with the angular Einstein radius, the component masses of the UKIRT05 binary lens were determined to be M1 = (1.05 ± 0.20) M⊙, M2 = (0.36 ± 0.07) M⊙, and the distance to the lens was found to be DL = (3.11 ± 0.40) kpc.Item Dark lens candidates from Gaia Data Release 3(EDP Sciences, France, for The European Southern Observatory, 2024-12) Kruszyńska K; Wyrzykowski L; Rybicki KA; Howil K; Jablońska M; Kaczmarek Z; Ihanec N; Maskoliūnas M; Bronikowski M; Pylypenko U; Udalski A; Mróz P; Poleski R; Skowron J; Szymański MK; Soszyński I; Pietrukowicz P; Kozlowski S; Ulaczyk K; Iwanek P; Wrona M; Gromadzki M; Mróz MJ; Abe F; Bando K; Barry R; Bennett DP; Bhattacharya A; Bond IA; Fukui A; Hamada R; Hamada S; Hamasaki N; Hirao Y; Ishitani Silva S; Itow Y; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tristram PJ; Vandorou A; Yama HGravitational microlensing is a phenomenon that allows us to observe the dark remnants of stellar evolution, even if these bodies are no longer emitting electromagnetic radiation. In particular, it can be useful to observe solitary neutron stars or stellar-mass black holes, providing a unique window through which to understand stellar evolution. Obtaining direct mass measurements with this technique requires precise observations of both the change in brightness and the position of the microlensed star. The European Space Agency's Gaia satellite can provide both. Using publicly available data from different surveys, we analysed events published in the Gaia Data Release 3 (Gaia DR3) microlensing catalogue. Here, we describe our selection of candidate dark lenses, where we suspect the lens is a white dwarf (WD), a neutron star (NS), a black hole (BH), or a mass-gap object, with a mass in the range between the heaviest NS and the least massive BH. We estimated the mass of the lenses using information obtained from the best-fitting microlensing models, source star, Galactic model, and the expected parameter distributions. We found eleven candidates for dark remnants: one WDs, three NSs, three mass-gap objects, and four BHs.Item Four binary microlenses with directly measured masses(EDP Sciences, 2025-10-07) Han C; Udalski A; Lee C-U; Bond IA; Albrow MD; Chung S-J; Gould A; Jung YK; Hwang K-H; Ryu Y-H; Shvartzvald Y; Shin I-G; Yee JC; Zang W; Yang H; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Mróz P; Szymański MK; Skowron J; Poleski R; Soszyński I; Pietrukowicz P; Kozłowski S; Rybicki KA; Iwanek P; Ulaczyk K; Wrona M; Gromadzki M; Mróz MJ; Jaroszyński M; Kiraga M; Abe F; Bennett DP; Bhattacharya A; Fukui A; Hamada R; Silva SI; Hirao Y; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Terry SK; Tristram PJ; Vandorou A; Yama HAims. We investigated binary-lens events from the 2022–2024 microlensing surveys, aiming to identify events suitable for lens mass measurements. We focused on two key light curve features: distinct caustic spikes with resolved crossings for measuring the angular Einstein radius (θE), and long durations enabling microlens-parallax (πE) measurements. Four events met these criteria: KMT-2022-BLG-1479, KMT-2023-BLG-0932, OGLE-2024-BLG-0142, and KMT-2024-BLG-1309. Methods. We estimated the angular Einstein radius by combining the normalized source radius measured by modeling the resolved caustic spikes with the angular source radius derived from the source color and magnitude. Additionally, we determined the microlens parallax through light curve modeling, taking higher-order effects caused by the orbital motions of Earth and the binary lens into consideration. Results. With measurements of the event timescale, angular Einstein radius, and microlens parallax, we uniquely determined the mass and distance of the lens. For the events KMT-2022-BLG-1479, KMT-2023-BLG-0932, and KMT-2024-BLG-1309, both components of the binary lens have masses lower than that of the Sun, consistent with M-type dwarfs, which are the most common type of lenses in Galactic microlensing events. These lenses are relatively nearby, with distances of ≲2.5 kpc, indicating their location within the Galactic disk. In contrast, for OGLE-2024-BLG-0142, the primary lens component has a mass similar to that of the Sun, while the companion lens component has about half the mass of the primary. This lens system is situated at a greater distance, roughly 4.5 kpc.Item KMT-2021-BLG-0284, KMT-2022-BLG-2480, and KMT-2024-BLG-0412: Three microlensing events involving two lens masses and two source stars(EDP Sciences for The European Southern Observatory, 2024-12) Han C; Udalski A; Bond IA; Lee C-U; Gould A; Albrow MD; Chung S-J; Hwang K-H; Jung YK; Ryu Y-H; Shvartzvald Y; Shin I-G; Yee JC; Yang H; Zang W; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Mróz P; Szymanski MK; Skowron J; Poleski R; Soszynski I; Pietrukowicz P; Kozłowski S; Rybicki KA; Iwanek P; Ulaczyk K; Wrona M; Gromadzki M; Mróz MJ; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hirao Y; Ishitani Silva S; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita KAims. We carried out a project involving the systematic analysis of microlensing data from the Korea Microlensing Telescope Network survey. The aim of this project is to identify lensing events with complex anomaly features that are difficult to explain using standard binary-lens or binary-source models. Methods. Our investigation reveals that the light curves of microlensing events KMT-2021-BLG-0284, KMT-2022-BLG-2480, and KMT-2024BLG-0412 display highly complex patterns with three or more anomaly features. These features cannot be adequately explained by a binary-lens (2L1S) model alone. However, the 2L1S model can effectively describe certain segments of the light curve. By incorporating an additional source into the modeling, we identified a comprehensive model that accounts for all the observed anomaly features. Results. Bayesian analysis, based on constraints provided by lensing observables, indicates that the lenses of KMT-2021-BLG-0284 and KMT-2024-BLG-0412 are binary systems composed of M dwarfs. For KMT-2022-BLG-2480, the primary lens is an early K-type main-sequence star with an M dwarf companion. The lenses of KMT-2021-BLG-0284 and KMT-2024-BLG-0412 are likely located in the bulge, whereas the lens of KMT-2022-BLG-2480 is more likely situated in the disk. In all events, the binary stars of the sources have similar magnitudes due to a detection bias favoring binary source events with a relatively bright secondary source star, which increases detection efficiency.Item KMT-2023-BLG-1866Lb: Microlensing super-Earth around an M dwarf host(EDP Sciences for The European Southern Observatory, 2024-07) Han C; Bond IA; Udalski A; Lee C-U; Gould A; Albrow MD; Chung S-J; Hwang K-H; Jung YK; Ryu Y-H; Shvartzvald Y; Shin I-G; Yee JC; Yang H; Zang W; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Abe F; Bando K; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hamada S; Hamasaki N; Hirao Y; Ishitani Silva S; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita K; Mróz P; Szymański MK; Skowron J; Poleski RA; Soszyński I; Pietrukowicz P; Kozłowski S; Rybicki KA; Iwanek P; Ulaczyk K; Wrona M; Gromadzki M; Mróz MJAims. We aim to investigate the nature of the short-term anomaly that appears in the lensing light curve of KMT-2023-BLG-1866. The anomaly was only partly covered due to its short duration of less than a day, coupled with cloudy weather conditions and a restricted nighttime duration. Methods. Considering the intricacy of interpreting partially covered signals, we thoroughly explored all potential degenerate solutions. Through this process, we identified three planetary scenarios that account for the observed anomaly equally well. These scenarios are characterized by the specific planetary parameters: (s, q)inner = [0.9740 ± 0.0083, (2.46 ± 1.07) × 10-5], (s, q)intermediate = [0.9779 ± 0.0017, (1.56 ± 0.25) × 10-5], and (s, q)outer = [0.9894 ± 0.0107, (2.31 ± 1.29) × 10-5], where s and q denote the projected separation (scaled to the Einstein radius) and mass ratio between the planet and its host, respectively. We identify that the ambiguity between the inner and outer solutions stems from the inner-outer degeneracy, while the similarity between the intermediate solution and the others is due to an accidental degeneracy caused by incomplete anomaly coverage. Results. Through Bayesian analysis utilizing the constraints derived from measured lensing observables and blending flux, our estimation indicates that the lens system comprises a very-low-mass planet orbiting an early M-type star situated approximately (6.2-6.5) kpc from Earth in terms of median posterior values for the different solutions. The median mass of the planet host is in the range of (0.48-0.51) M⊙, and that of the planet's mass spans a range of (2.6-4.0) ME, varying across different solutions. The detection of KMT-2023-BLG-1866Lb signifies the extension of the lensing surveys to very-low-mass planets that have been difficult to detect in earlier surveys.Item Microlensing brown-dwarf companions in binaries detected during the 2022 and 2023 seasons(EDP Sciences for The European Southern Observatory, 2024-11) Han C; Bond IA; Udalski A; Lee C-U; Gould A; Albrow MD; Chung S-J; Hwang K-H; Jung YK; Ryu Y-H; Shvartzvald Y; Shin I-G; Yee JC; Yang H; Zang W; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Abe F; Bando K; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hamada S; Hamasaki N; Hirao Y; Ishitani Silva S; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita K; Mróz P; Szymański MK; Skowron J; Poleski R; Soszyński I; Pietrukowicz P; Kozlowski S; Rybicki KA; Iwanek P; Ulaczyk K; Wrona M; Gromadzki M; Mróz MJAims. Building on previous works to construct a homogeneous sample of brown dwarfs in binary systems, we investigate microlensing events detected by the Korea Microlensing Telescope Network (KMTNet) survey during the 2022 and 2023 seasons. Methods. Given the difficulty in distinguishing brown-dwarf events from those produced by binary lenses with nearly equal-mass components, we analyze all lensing events detected during the seasons that exhibit anomalies characteristic of binary-lens systems. Results. Using the same criteria consistently applied in previous studies, we identify six additional brown dwarf candidates through the analysis of lensing events KMT-2022-BLG-0412, KMT-2022-BLG-2286, KMT-2023-BLG-0201, KMT-2023-BLG-0601, KMT-2023-BLG-1684, and KMT-2023-BLG-1743. An examination of the mass posteriors shows that the median mass of the lens companions ranges from 0.02 M⊙ to 0.05 M⊙, indicating that these companions fall within the brown-dwarf mass range. The mass of the primary lenses ranges from 0.11 M⊙ to 0.68 M⊙, indicating that they are low-mass stars with substantially lower masses compared to the Sun.Item MOA-2022-BLG-091Lb and KMT-2024-BLG-1209Lb: Microlensing planets detected through weak caustic-crossing signals(EDP Sciences, 2025-07-01) Han C; Lee C-U; Udalski A; Bond IA; Yang H; Albrow MD; Chung S-J; Gould A; Jung YK; Hwang K-H; Ryu Y-H; Shvartzvald Y; Shin I-G; Yee JC; Zang W; Inyanya T; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Mróz P; Szymański MK; Skowron J; Poleski R; Soszyński I; Pietrukowicz P; Kozłowski S; Rybicki KA; Iwanek P; Ulaczyk K; Wrona M; Gromadzki M; Mróz MJ; Jaroszyński M; Kiraga M; Abe F; Bando K; Bennett DP; Bhattacharya A; Fukui A; Hamada R; Hamada S; Hamasaki N; Hirao Y; Ishitani Silva S; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Terry SK; Tristram PJ; Vandorou A; Yama H; Tang Y; Mao S; Maoz D; Zhu WAims. The light curves of the microlensing events MOA-2022-BLG-091 and KMT-2024-BLG-1209 exhibit anomalies with very similar features. These anomalies appear near the peaks of the light curves, where the magnifications are moderately high, and are distinguished by weak caustic-crossing features with minimal distortion while the source remains inside the caustic. To achieve a deeper understanding of these anomalies, we conducted a comprehensive analysis of the lensing events. Methods. We carried out binary-lens modeling with a thorough exploration of the parameter space. This analysis revealed that the anomalies in both events are of planetary origin, although their exact interpretation is complicated by different types of degeneracy. In the case of MOA-2022-BLG-091, the main difficulty in the interpretation of the anomaly arises from a newly identified degeneracy related to the uncertain angle at which the source trajectory intersects the planet host axis. For KMT-2024-BLG-1209, the interpretation is affected by the previously known inner-outer degeneracy, which leads to ambiguity between solutions in which the source passes through either the inner or outer caustic region relative to the planet host. Results. Bayesian analysis indicates that the planets in both lens systems are giant planets with masses about two to four times that of Jupiter, orbiting early K-type main-sequence stars. Both systems are likely located in the Galactic disk at a distance of around 4 kiloparsecs. The degeneracy in KMT-2024-BLG-1209 is challenging to resolve because it stems from intrinsic similarities in the caustic structures of the degenerate solutions. In contrast, the degeneracy in MOA-2022-BLG-091, which occurs by chance rather than from inherent characteristics, is expected to be resolved by the future space based Roman RGES microlensing survey.Item OGLE-2014-BLG-0221Lb: A Jupiter Mass Ratio Companion Orbiting Either a Late-type Star or a Stellar Remnant(American Astronomical Society, 2024-03-14) Kirikawa R; Sumi T; Bennett DP; Suzuki D; Koshimoto N; Miyazaki S; Bond IA; Udalski A; Rattenbury NJ; Abe F; Barry R; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hirao Y; Silva Ishitani S; Itow Y; Matsubara Y; Muraki Y; Olmschenk G; Ranc C; Satoh YK; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita K; Mróz P; Poleski R; Skowron J; Szymański MK; Soszyński I; Pietrukowicz P; Kozłowski W; Ulaczyk K; Mróz MJWe present the analysis of the microlensing event OGLE-2014-BLG-0221, a planetary candidate event discovered in 2014. The photometric light curve is best described by a binary-lens single-source model. Our light-curve modeling finds two degenerate models, with event timescales of t E ∼ 70 days and ∼110 days. These timescales are relatively long, indicating that the discovered system would possess a substantial mass. The two models are similar in their planetary parameters with a Jupiter mass ratio of q ∼ 10−3 and a separation of s ∼ 1.1. Bayesian inference is used to estimate the physical parameters of the lens, revealing that the shorter timescale model predicts 65% and 25% probabilities of a late-type star and white dwarf host, respectively, while the longer timescale model favors a black hole host with a probability ranging from 60% to 95%, under the assumption that stars and stellar remnants have equal probabilities of hosting companions with planetary mass ratios. If the lens is a remnant, this would be the second planet found by microlensing around a stellar remnant. The current separation between the source and lens stars is 41-139 mas depending on the models. This indicates the event is now ready for high-angular-resolution follow-up observations to rule out either of the models. If precise astrometric measurements are conducted in multiple bands, the centroid shift due to the color difference between the source and lens would be detected in the luminous lens scenarioItem OGLE-2015-BLG-1609Lb: A sub-Jovian planet orbiting a low-mass stellar or brown dwarf host(EDP Sciences, 2025-05-01) Mróz MJ; Poleski R; Udalski A; Sumi T; Tsapras Y; Hundertmark M; Pietrukowicz P; Szymański MK; Skowron J; Mróz P; Gromadzki M; Iwanek P; Kozłowski S; Ratajczak M; Rybicki KA; Skowron DM; Soszyński I; Ulaczyk K; Wrona M; Abe F; Bando K; Bennett DP; Bhattacharya A; Bond IA; Fukui A; Hamada R; Hamada S; Hamasaki N; Hirao Y; Ishitani Silva S; Itow Y; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Suzuki D; Terry SK; Tristram PJ; Vandorou A; Yama H; Street RA; Bachelet E; Dominik M; Cassan A; Figuera Jaimes R; Horne K; Schmidt R; Snodgrass C; Wambsganss J; Steele IA; Menzies J; Jørgensen UG; Longa-Peña P; Peixinho N; Skottfelt J; Southworth J; Andersen MI; Bozza V; Burgdorf MJ; D’Ago G; Hinse TC; Kerins E; Korhonen H; Kuffmeier M; Mancini L; Rabus M; Rahvar SWe present a comprehensive analysis of the planetary microlensing event OGLE-2015-BLG-1609. The planetary anomaly was detected by two survey telescopes, OGLE and MOA. Both surveys collected enough data over the planetary anomaly to enable an unambiguous planet detection. Such survey detections of planetary anomalies are needed to build a robust sample of planets, which could improve studies on the microlensing planetary occurrence rate by reducing biases and statistical uncertainties. In this work we examined different methods for modeling microlensing events using individual datasets. In particular, we incorporated a Galactic model prior to better constrain the poorly defined microlensing parallax. Ultimately, we fitted a comprehensive model to all available data, identifying three potential topologies, with two showing comparably high Bayesian evidence. Our analysis indicates that the host of the planet is either a brown dwarf, with a probability of 34%, or a low-mass stellar object (M dwarf), with a probability of 66%. The topology that provides the best fit to the data results in an extraordinary low host mass, Mh = 0.025+0.050-0.012M⊙, accompanied by an Earth-mass planet with Mc = 1.9+3.9-1.0M⊕.Item OGLE-2018-BLG-0971, MOA-2023-BLG-065, and OGLE-2023-BLG-0136: Microlensing events with prominent orbital effects(EDP Sciences, 2024-06-14) Han C; Udalski A; Bond IA; Lee C-U; Gould A; Albrow MD; Chung S-J; Hwang K-H; Jung YK; Kim H-W; Ryu Y-H; Shvartzvald Y; Shin I-G; Yee JC; Yang H; Zang W; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Mróz P; Szymański MK; Skowron J; Poleski R; Soszyński I; Pietrukowicz P; Kozłowski S; Rybicki KA; Iwanek P; Ulaczyk K; Wrona M; Gromadzki M; Mróz MJ; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hirao Y; Silva SI; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita KAims. We undertake a project to reexamine microlensing data gathered from high-cadence surveys. The aim of the project is to reinvestigate lensing events whose light curves exhibit intricate anomaly features that are associated with caustics, but lack prior proposed models that would explain these features. Methods. Through detailed reanalyses considering higher-order effects, we determined that it is vital to account for the orbital motions of lenses to accurately explain the anomaly features observed in the light curves of the lensing events OGLE-2018-BLG-0971, MOA-2023-BLG-065, and OGLE-2023-BLG-0136. Results. We estimated the masses and distances to the lenses by conducting Bayesian analyses using the lensing parameters of the newly found lensing solutions. These analyses showed that the lenses of the events OGLE-2018-BLG-0971 and MOA-2023-BLG-065 are binaries composed of M dwarfs, while the lens of OGLE-2023-BLG-0136 likely is a binary composed of an early K-dwarf primary and a late M-dwarf companion. For all lensing events, the probability that the lens resides in the bulge is considerably higher than that it is located in the disk.Item Six microlensing planets detected via sub-day signals during the 2023–2024 season(EDP Sciences on behalf of The European Southern Observatory (Ulis, France), 2025-10) Han C; Lee C-U; Udalski A; Bond IA; Albrow MD; Chung S-J; Gould A; Jung YK; Hwang K-H; Ryu Y-H; Shvartzvald Y; Shin I-G; Yee JC; Zang W; Yang H; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Mróz P; Szymański MK; Skowron J; Poleski R; Soszyński I; Pietrukowicz P; Kozłowski S; Rybicki KA; Iwanek P; Ulaczyk K; Wrona M; Gromadzki M; Mróz MJ; Jaroszyński M; Kiraga M; Abe F; Bennett DP; Bhattacharya A; Fukui A; Hamada R; Silva SI; Hirao Y; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Terry SK; Tristram PJ; Vandorou A; Yama HAims. We present analyses of six microlensing events: KMT-2023-BLG-0548, KMT-2023-BLG-0830, KMT-2023-BLG-0949, KMT-2024-BLG-1281, KMT-2024-BLG-2059, and KMT-2024-BLG-2242. These were identified in KMTNet data from the 2023–2024 seasons, selected for exhibiting anomalies shorter than one day – potential signatures of low-mass planetary companions. Motivated by this, we conducted detailed investigations to characterize the nature of the observed perturbations. Methods. Detailed modeling of the light curves reveals that the anomalies in all six events are caused by planetary companions to the lenses. The brief durations of the anomalies are attributed to various factors: a low planet-to-host mass ratio (KMT-2024-BLG-2059, KMT-2024-BLG-2242), a wide planet-host separation (KMT-2023-BLG-0548), small and elongated caustics restricting the source’s interaction region (KMT-2023-BLG-0830, KMT-2024-BLG-1281), and a partial caustic crossing (KMT-2023-BLG-0949). Results. We estimated the physical parameters of the lens systems using Bayesian analysis. For KMT-2023-BLG-0548, the posterior distribution of the lens mass shows two distinct peaks: a low-mass solution indicating a sub-Jovian planet orbiting an M dwarf in the Galactic disk, and a high-mass solution suggesting a super-Jovian planet around a K-type dwarf in the bulge. KMT-2023-BLG-0830 hosts a Neptune-mass planet orbiting an M dwarf in the Galactic bulge. KMT-2023-BLG-0949 involves a super-Jovian planet orbiting a ∼0.5 M☉ host located at ∼6 kpc. KMT-2024-BLG-2059Lb is a super-Earth with a mass about seven times that of Earth, orbiting an early M dwarf of ∼0.5 M☉. KMT-2024-BLG-1281L hosts a planet slightly more massive than Neptune, orbiting an M dwarf of ∼0.3 M☉. The short timescale and small angular Einstein radius of KMT-2024-BLG-2242 suggest a ∼0.07 M☉ primary, likely a brown dwarf, with a planet of Uranus- or Neptune-like mass.
