Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mukhopadhyay S"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Network Lifetime Improvement through Energy-Efficient Hybrid Routing Protocol for IoT Applications
    (MDPI (Basel, Switzerland), 2021-11-09) Mishra M; Gupta GS; Gui X; Takefuji Y; Mukhopadhyay S; Vezzetti E
    The application of the Internet of Things (IoT) in wireless sensor networks (WSNs) poses serious challenges in preserving network longevity since the IoT necessitates a considerable amount of energy usage for sensing, processing, and data communication. As a result, there are several conventional algorithms that aim to enhance the performance of WSN networks by incorporating various optimization strategies. These algorithms primarily focus on the network layer by developing routing protocols to perform reliable communication in an energy-efficient manner, thus leading to an enhanced network life. For increasing the network lifetime in WSNs, clustering has been widely accepted as an important method that groups sensor nodes (SNs) into clusters. Additionally, numerous researchers have been focusing on devising various methods to increase the network lifetime. The prime factor that helps to maximize the network lifetime is the minimization of energy consumption. The authors of this paper propose a multi-objective optimization approach. It selects the optimal route for transmitting packets from source to sink or the base station (BS). The proposed model employs a two-step approach. The first step employs a trust model to select the cluster heads (CHs) that manage the data communication between the BS and nodes in the cluster. Further, a novel hybrid algorithm, combining a particle swarm optimization (PSO) algorithm and a genetic algorithm (GA), is proposed to determine the routes for data transmission. To validate the efficacy of the proposed hybrid algorithm, named PSOGA, simulations were conducted and the results were compared with the existing LEACH method and PSO, with a random route selection for five different cases. The obtained results establish the efficiency of the proposed approach, as it outperforms existing methods with increased energy efficiency, increased network throughput, high packet delivery rate, and high residual energy throughout the entire iterations.
  • Loading...
    Thumbnail Image
    Item
    Renewable energy harvesting for low power wireless monitoring networks
    (IACSIT Press, 1/11/2017) Rehman Z; Al-Bahadly IH; Mukhopadhyay S; Amir, HFA
    —Energy Harvesting Technologies for wireless electronics networks have undergone a tremendous development in the recent past. Several micro level energy generating units have been developed to convert variety of renewable energy sources to useable electrical energy. In order to integrate and exploit maximum benefits from renewable sources, an intelligent power electronics interface is mandatory. This paper presents a multiport power electronics circuitry to extract maximum energy from renewable energy sources and route it to power up wireless electronics networks. This new topology has ability to cope with different voltage level requirements and is capable of integrating several energy sources to satisfy the variable load demands. The sources can be utilized independently or concurrently. Surplus energy can also be stored and made available in case of absence of renewable energy sources. Analytical and simulation results in Continuous Conduction mode are presented and are validated by experimental results on a prototype model

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify