SCHEDULED SYSTEM MAINTENANCE – Monday 6 October to Tuesday 7 October 2025. We expect no disruption to services. For further assistance please contact the Library team, library@massey.ac.nz
Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Nelms SE"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Fourier transform infrared (FTIR) analysis identifies microplastics in stranded common dolphins (Delphinus delphis) from New Zealand waters
    (Elsevier Ltd, 2021-12) Stockin KA; Pantos O; Betty EL; Pawley MDM; Doake F; Masterton H; Palmer EI; Perrott MR; Nelms SE; Machovsky-Capuska GE
    Here we provide a first assessment of microplastics (MPs) in stomach contents of 15 common dolphins (Delphinus delphis) from both single and mass stranding events along the New Zealand coast between 2019 and 2020. MPs were observed in all examined individuals, with an average of 7.8 pieces per stomach. Most MPs were fragments (77%, n = 90) as opposed to fibres (23%, n = 27), with translucent/clear (46%) the most prevalent colour. Fourier transform infrared (FTIR) spectroscopy revealed polyethylene terephthalate (65%) as the most predominant polymer in fibres, whereas polypropylene (31%) and acrylonitrile butadiene styrene (20%) were more frequently recorded as fragments. Mean fragment and fibre size was 584 μm and 1567 μm, respectively. No correlation between total number of MPs and biological parameters (total body length, age, sexual maturity, axillary girth, or blubber thickness) was observed, with similar levels of MPs observed between each of the mass stranding events. Considering MPs are being increasingly linked to a wide range of deleterious effects across taxa, these findings in a typically pelagic marine sentinel species warrants further investigation.
  • Loading...
    Thumbnail Image
    Item
    Marine mammal conservation: over the horizon
    (Inter-Research, 2021-03-25) Nelms SE; Alfaro-Shigueto J; Arnould JPY; Avila IC; Nash SB; Campbell E; Carter MID; Collins T; Currey RJC; Domit C; Franco-Trecu V; Fuentes MMPB; Gilman E; Harcourt RG; Hines EM; Hoelze AR; Hooker SK; Johnston DW; Kelkar N; Kiszka JJ; Laidre KL; Mangel JC; Marsh H; Maxwe SM; Onoufriou AB; Palacios DM; Pierce GJ; Ponnampalam LS; Porter LJ; Russell DJF; Stockin KA; Sutaria D; Wambiji N; Weir CR; Wilson B; Godley BJ; McMahon C
    Marine mammals can play important ecological roles in aquatic ecosystems, and their presence can be key to community structure and function. Consequently, marine mammals are often considered indicators of ecosystem health and flagship species. Yet, historical population declines caused by exploitation, and additional current threats, such as climate change, fisheries bycatch, pollution and maritime development, continue to impact many marine mammal species, and at least 25% are classified as threatened (Critically Endangered, Endangered or Vulnerable) on the IUCN Red List. Conversely, some species have experienced population increases/recoveries in recent decades, reflecting management interventions, and are heralded as conservation successes. To continue these successes and reverse the downward trajectories of at-risk species, it is necessary to evaluate the threats faced by marine mammals and the conservation mechanisms available to address them. Additionally, there is a need to identify evidence-based priorities of both research and conservation needs across a range of settings and taxa. To that effect we: (1) outline the key threats to marine mammals and their impacts, identify the associated knowledge gaps and recommend actions needed; (2) discuss the merits and downfalls of established and emerging conservation mechanisms; (3) outline the application of research and monitoring techniques; and (4) highlight particular taxa/populations that are in urgent need of focus.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings