Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Okamoto Jr, J."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Face tracking using a hyperbolic catadioptric omnidirectional system
    (Massey University, 2009) Barczak, A.L.C.; Okamoto Jr, J.; Grassi Jr, V.
    In the first part of this paper, we present a brief review on catadioptric omnidirectional systems. The special case of the hyperbolic omnidirectional system is analysed in depth. The literature shows that a hyperboloidal mirror has two clear advantages over alternative geometries. Firstly, a hyperboloidal mirror has a single projection centre [1]. Secondly, the image resolution is uniformly distributed along the mirror’s radius [2]. In the second part of this paper we show empirical results for the detection and tracking of faces from the omnidirectional images using Viola-Jones method. Both panoramic and perspective projections, extracted from the omnidirectional image, were used for that purpose. The omnidirectional image size was 480x480 pixels, in greyscale. The tracking method used regions of interest (ROIs) set as the result of the detections of faces from a panoramic projection of the image. In order to avoid losing or duplicating detections, the panoramic projection was extended horizontally. Duplications were eliminated based on the ROIs established by previous detections. After a confirmed detection, faces were tracked from perspective projections (which are called virtual cameras), each one associated with a particular face. The zoom, pan and tilt of each virtual camera was determined by the ROIs previously computed on the panoramic image. The results show that, when using a careful combination of the two projections, good frame rates can be achieved in the task of tracking faces reliably.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings