Browsing by Author "Pajooh HH"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemBlockchain and 6G-Enabled IoT(MDPI (Basel, Switzerland), 2022-12) Pajooh HH; Demidenko S; Aslam S; Harris M; Pegoraro PA; Ghiani EUbiquitous computing turns into a reality with the emergence of the Internet of Things (IoT) adopted to connect massive numbers of smart and autonomous devices for various applications. 6G-enabled IoT technology provides a platform for information collection and processing at high speed and with low latency. However, there are still issues that need to be addressed in an extended connectivity environment, particularly the security and privacy domain challenges. In addition, the traditional centralized architecture is often unable to address problems associated with access control management, interoperability of different devices, the possible existence of a single point of failure, and extensive computational overhead. Considering the evolution of decentralized access control mechanisms, it is necessary to provide robust security and privacy in various IoT-enabled industrial applications. The emergence of blockchain technology has changed the way information is shared. Blockchain can establish trust in a secure and distributed platform while eliminating the need for third-party authorities. We believe the coalition of 6G-enabled IoT and blockchain can potentially address many problems. This paper is dedicated to discussing the advantages, challenges, and future research directions of integrating 6G-enabled IoT and blockchain technology for various applications such as smart homes, smart cities, healthcare, supply chain, vehicle automation, etc.
- ItemExperimental Performance Analysis of a Scalable Distributed Hyperledger Fabric for a Large-Scale IoT Testbed(MDPI (Basel, Switzerland), 2022-07) Pajooh HH; Rashid MA; Alam F; Demidenko SBlockchain technology, with its decentralization characteristics, immutability, and traceability, is well-suited for facilitating secure storage, sharing, and management of data in decentralized Internet of Things (IoT) applications. Despite the increasing development of blockchain platforms, there is still no comprehensive approach for adopting blockchain technology in IoT systems. This is due to the blockchain’s limited capability to process substantial transaction requests from a massive number of IoT devices. Hyperledger Fabric (HLF) is a popular open-source permissioned blockchain platform hosted by the Linux Foundation. This article reports a comprehensive empirical study that measures HLF’s performance and identifies potential performance bottlenecks to better meet the requirements of blockchain-based IoT applications. The study considers the implementation of HLF on distributed large-scale IoT systems. First, a model for monitoring the performance of the HLF platform is presented. It addresses the overhead challenges while delivering more details on system performance and better scalability. Then, the proposed framework is implemented to evaluate the impact of varying network workloads on the performance of the blockchain platform in a large-scale distributed environment. In particular, the performance of the HLF is evaluated in terms of throughput, latency, network size, scalability, and the number of peers serviceable by the platform. The obtained experimental results indicate that the proposed framework can provide detailed real-time performance evaluation of blockchain systems for large-scale IoT applications.
- ItemHyperledger Fabric Blockchain for Securing the Edge Internet of Things(MDPI (Basel, Switzerland), 7/01/2021) Pajooh HH; Rashid M; Alam F; Demidenko SProviding security and privacy to the Internet of Things (IoT) networks while achieving it with minimum performance requirements is an open research challenge. Blockchain technology, as a distributed and decentralized ledger, is a potential solution to tackle the limitations of the current peer-to-peer IoT networks. This paper presents the development of an integrated IoT system implementing the permissioned blockchain Hyperledger Fabric (HLF) to secure the edge computing devices by employing a local authentication process. In addition, the proposed model provides traceability for the data generated by the IoT devices. The presented solution also addresses the IoT systems’ scalability challenges, the processing power and storage issues of the IoT edge devices in the blockchain network. A set of built-in queries is leveraged by smart-contracts technology to define the rules and conditions. The paper validates the performance of the proposed model with practical implementation by measuring performance metrics such as transaction throughput and latency, resource consumption, and network use. The results show that the proposed platform with the HLF implementation is promising for the security of resource-constrained IoT devices and is scalable for deployment in various IoT scenarios.
- ItemHyperledger Fabric Blockchain for Securing the Edge Internet of Things(MDPI (Basel, Switzerland), 7/01/2021) Pajooh HH; Rashid M; Alam F; Demidenko SProviding security and privacy to the Internet of Things (IoT) networks while achieving it with minimum performance requirements is an open research challenge. Blockchain technology, as a distributed and decentralized ledger, is a potential solution to tackle the limitations of the current peer-to-peer IoT networks. This paper presents the development of an integrated IoT system implementing the permissioned blockchain Hyperledger Fabric (HLF) to secure the edge computing devices by employing a local authentication process. In addition, the proposed model provides traceability for the data generated by the IoT devices. The presented solution also addresses the IoT systems’ scalability challenges, the processing power and storage issues of the IoT edge devices in the blockchain network. A set of built-in queries is leveraged by smart-contracts technology to define the rules and conditions. The paper validates the performance of the proposed model with practical implementation by measuring performance metrics such as transaction throughput and latency, resource consumption, and network use. The results show that the proposed platform with the HLF implementation is promising for the security of resource-constrained IoT devices and is scalable for deployment in various IoT scenarios
- ItemMulti-Layer Blockchain-Based Security Architecture for Internet of Things(MDPI (Basel, Switzerland), 2021-02) Pajooh HH; Rashid M; Alam F; Demidenko SThe proliferation of smart devices in the Internet of Things (IoT) networks creates significant security challenges for the communications between such devices. Blockchain is a decentralized and distributed technology that can potentially tackle the security problems within the 5G-enabled IoT networks. This paper proposes a Multi layer Blockchain Security model to protect IoT networks while simplifying the implementation. The concept of clustering is utilized in order to facilitate the multi-layer architecture. The K-unknown clusters are defined within the IoT network by applying techniques that utillize a hybrid Evolutionary Computation Algorithm while using Simulated Annealing and Genetic Algorithms. The chosen cluster heads are responsible for local authentication and authorization. Local private blockchain implementation facilitates communications between the cluster heads and relevant base stations. Such a blockchain enhances credibility assurance and security while also providing a network authentication mechanism. The open-source Hyperledger Fabric Blockchain platform is deployed for the proposed model development. Base stations adopt a global blockchain approach to communicate with each other securely. The simulation results demonstrate that the proposed clustering algorithm performs well when compared to the earlier reported approaches. The proposed lightweight blockchain model is also shown to be better suited to balance network latency and throughput as compared to a traditional global blockchain.