Browsing by Author "Procter J"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- ItemBasic Volcanic Elements of the Arxan-Chaihe Volcanic Field, Inner Mongolia, NE China(inTech Open: Rijeka, Croatia, 2020-10-30) Li B; Nemeth K; Palmer A; Wu J; Procter J; Liu JThe Arxan-Chaihe Volcanic Field, Inner Mongolia, NE China is a Pleistocene to Recent volcanic field still considered to be active. In this chapter we provide an update of current volcanological research conducted in the last four years to describe the volcanic architecture of the identified vents, their eruptive history and potential volcanic hazards. Here we provide an evidence-based summary of the most common volcanic eruption styles and types the field experienced in its evolution. The volcanic field is strongly controlled by older structural elements of the region. Hence most of the volcanoes of the field are fissure-controlled, fissure-aligned and erupted in Hawaiian to Strombolian-style creating lava spatter and scoria cone cone chains. One of the largest and most complex volcano of the field (Tongxin) experienced a violent phreatomagmatic explosive phase creating a maar in an intra-mountain basin, while the youngest known eruptions formed a triple vent set (Yanshan) that reached violent Strombolian phases and created an extensive ash and lapilli plains in the surrounding areas. This complex vent system also emitted voluminous lava flows that change the landscape by damming fluival networks, providing a volcanological paradise for the recently established Arxan UNESCO GLobal Geopark.
- ItemCharacterizing the evolution of mass flow properties and dynamics through analysis of seismic signals: Insights from the 18 March 2007 Mt. Ruapehu lake-breakout lahar(Copernicus Publications on behalf of the European Geosciences Union, 2023-03-06) Walsh B; Lormand C; Procter J; Williams-Jones GMonitoring for mass flows on volcanoes can be challenging due to the ever-changing landscape along the flow path, which can drastically transform the properties and dynamics of the flow. These changes to the flows require the need for detection strategies and risk assessments that are tailored not only between different volcanoes but at different distances along flow paths as well. Being able to understand how a flow event may transform in time and space along the channel is of utmost importance for hazard management. While visual observations and simple measuring devices in the past have shown how volcanic mass flows transform along the flow path, these same features for the most part have not been described using seismological methods. On 18 March 2007, Mt. Ruapehu produced the biggest lahar in Aotearoag New Zealand in over 100 years. At 23:18g UTC the tephra dam holding the Crater Lake water back collapsed causing 1.3×106g m3 of water to flow out and rush down the Whangaehu channel. We describe here the seismic signature of a lake-breakout lahar over the course of 83g km along the Whangaehu River system using three three-component broadband seismometers installed <10g m from the channel at 7.4, 28, and 83g km from the Crater Lake source. Examination of three-component seismic amplitudes, frequency content, and directionality, combined with video imagery and sediment concentration data, was carried out. The seismic data show the evolution of the lahar as it transformed from a highly turbulent out-burst flood (high peak frequency throughout), to a fully bulked-up multi-phase hyperconcentrated flow (varying frequency patterns depending on the lahar phase), to a slurry flow (bedload dominant). Estimated directionality ratios show the elongation of the lahar with distance down the channel, where each recording station depicts a similar pattern but for differing lengths of time. Furthermore, using directionality ratios shows extraordinary promise for lahar monitoring and detection systems where streamflow is present in the channel.
- ItemCrystal entrainment from cool, low-silica rocks into hot, high-silica melts: diverse primary melt compositions at Taranaki volcano, New Zealand(The Geological Society of London, 2023-05-19) D'Mello N; Zellmer G; Kereszturi G; Ubide T; Procter J; Stewart RThe prevalence of antecrysts in arc volcanic rocks is widely accepted, yet the origin of their carrier melts remains debated. Crystal cargo in lava flows from Taranaki volcano, New Zealand, is dominated by plagioclase, clinopyroxene and amphibole. Except for some crystal rims, mineral phases are in disequilibrium with the melt they are entrained in. Major element chemistry reveals an almost complete compositional overlap between the crystals in the lava and those in xenoliths. The large volume fraction of crystals (35–55 vol%) exerts a strong control on whole-rock compositions, reducing silica by 5–11 wt% compared with the carrier melt. Yet there is no clear relationship between mineral proportion and bulk-rock compositions. Our data are inconsistent with extensive fractional crystallization, commonly invoked as a driver of magma evolution towards silica-rich compositions. Instead, high-temperature, aphyric carrier melts with varied compositions (55–68 wt% SiO2) entrain crystal cargo while ascending through colder, low-silica rocks. Thus, some parental melts at Taranaki volcano are significantly more silica-rich than arc basalts commonly invoked as primary magmas. Further, thermometric and hygrometric constraints preclude a deep crustal hot zone for the source of these melts, which we argue are of subcrustal origin.
- ItemGlobal sensitivity analysis of models for volcanic ash forecasting(Elsevier B V, 2025-10-01) Scott E; Whitehead M; Mead S; Bebbington M; Procter JVolcanic ash is a widespread and destructive volcanic hazard. Timely and accurate forecasts for ash deposition and dispersal help mitigate the risks of volcanic hazards to society. Producing these forecasts requires numerous simulations with varying input parameters to encapsulate uncertainty and accurately capture the actual event to deliver a reliable forecast. However, exploring all possible combinations of input parameters is computationally infeasible in the lead up to an eruption. This research explores the input space of two volcanic ash transport and dispersion models, Tephra2, which is based on a simplified analytical solution, and Fall3D, which is a computational model based on more general assumptions, in the context of forecasting an unknown future eruption. We use the exemplar of Taranaki Mounga (Mount Taranaki), Aotearoa New Zealand, which has an estimated 30% to 50% chance of an explosive eruption in the next 50 years. We statistically determine how much each input parameter contributes to model output variance through a global sensitivity analysis via Sobol’ indices and the extended Fourier Amplitude Sensitivity Test (eFAST). Our findings show that grain size distribution, diffusion, plume shape, and plume duration (Fall3D only) have a substantial first-order impact on model output variance. In contrast, mass, particle density, and plume height have minimal impact in the first-order but become influential when considering parameter-parameter inter-relationships (total-order). The results not only enhance our understanding of model sensitivities but also point to improved efficiency in forecasting efforts.
- ItemMapping a Cloud-Free Rice Growth Stages Using the Integration of PROBA-V and Sentinel-1 and Its Temporal Correlation with Sub-District Statistics(MDPI (Basel, Switzerland), 2021-04-13) Ramadhani F; Pullanagari R; Kereszturi G; Procter J; Farooque AAMonitoring rice production is essential for securing food security against climate change threats, such as drought and flood events becoming more intense and frequent. The current practice to survey an area of rice production manually and in near real-time is expensive and involves a high workload for local statisticians. Remote sensing technology with satellite-based sensors has grown in popularity in recent decades as an alternative approach, reducing the cost and time required for spatial analysis over a wide area. However, cloud-free pixels of optical imagery are required to pro-duce accurate outputs for agriculture applications. Thus, in this study, we propose an integration of optical (PROBA-V) and radar (Sentinel-1) imagery for temporal mapping of rice growth stages, including bare land, vegetative, reproductive, and ripening stages. We have built classification models for both sensors and combined them into 12-day periodical rice growth-stage maps from January 2017 to September 2018 at the sub-district level over Java Island, the top rice production area in Indonesia. The accuracy measurement was based on the test dataset and the predicted cross-correlated with monthly local statistics. The overall accuracy of the rice growth-stage model of PROBA-V was 83.87%, and the Sentinel-1 model was 71.74% with the Support Vector Machine classifier. The temporal maps were comparable with local statistics, with an average correlation between the vegetative area (remote sensing) and harvested area (local statistics) is 0.50, and lag time 89.5 days (n = 91). This result was similar to local statistics data, which correlate planting and the harvested area at 0.61, and the lag time as 90.4 days, respectively. Moreover, the cross-correlation between the predicted rice growth stage was also consistent with rice development in the area (r > 0.52, p < 0.01). This novel method is straightforward, easy to replicate and apply to other areas, and can be scaled up to the national and regional level to be used by stakeholders to support improved agricultural policies for sustainable rice production.
- ItemNitrous oxide (N2O) synthesis by the freshwater cyanobacterium Microcystis aeruginosa(Copernicus Publications on behalf of the European Geosciences Union, 2023-02-13) Fabisik F; Guieysse B; Procter J; Plouviez M; Treude T; Bouillon SPure cultures of the freshwater cyanobacterium Microcystis aeruginosa synthesized nitrous oxide (N2O) when supplied with nitrite (NO2-) in darkness (198.9 nmol g-DW-1 h-1 after 24 h) and illumination (163.1 nmol g-DW-1 h-1 after 24 h), whereas N2O production was negligible in abiotic controls supplied with NO2- and in cultures deprived of exogenous nitrogen. N2O production was also positively correlated to the initial NO2- and M. aeruginosa concentrations but was low to negligible when nitrate (NO3-) and ammonium (NH4+) were supplied as the sole exogenous N source instead of NO2-. A protein database search revealed that M. aeruginosa possesses protein homologous to eukaryotic microalgae enzymes known to catalyze the successive reduction of NO2- into nitric oxide (NO) and N2O. Our laboratory study is the first demonstration that M. aeruginosa possesses the ability to synthesize N2O. As M. aeruginosa is a bloom-forming cyanobacterium found globally, further research (including field monitoring) is now needed to establish the significance of N2O synthesis by M. aeruginosa under relevant conditions (especially in terms of N supply). Further work is also needed to confirm the biochemical pathway and potential function of this synthesis.
- ItemProbabilistic Volcanic Hazard Assessment for National Park Infrastructure Proximal to Taranaki Volcano (New Zealand)(Frontiers Media S.A., 2022-03-28) Mead S; Procter J; Bebbington M; Rodriguez-Gomez C; Fontijn KHazard assessment for infrastructure proximal to a volcanic vent raises issues that are often not present, or not as severe in hazard assessments for more distal infrastructure. Proximal regions are subject to a greater number of hazardous phenomena, and variability in impact intensity increases with the hazard magnitude. To probabilistically quantify volcanic hazard to infrastructure, multiple volcanic hazards and their effects on exposed elements need to be considered. Compared to single-hazard assessments, multi-hazard assessments increase the size and complexity of determining hazard occurrence and magnitude, typically introducing additional uncertainties in the quantification of risk. A location-centred approach, focusing on key locations rather than key hazards, can simplify the problem to one requiring identification of hazards with the potential to affect the location, followed by assessment of the probability of these hazards and their triggering eruptions. The location-centred approach is more compatible to multi-source hazards and allows for different hazard estimation methodologies to be applied as appropriate for the infrastructure type. We present a probabilistic quantification of volcanic hazard using this location centred approach for infrastructure within Te Papakura o Taranaki National Park, New Zealand. The impact to proposed park infrastructure from volcanic activity (originating from Mt. Taranaki) is quantified using a probability chain to provide a structured approach to integrate differing hazard estimation methods with eruption probability estimates within asset lifetimes. This location-centered approach provides quantitative estimates for volcanic hazards that significantly improve volcanic hazard estimates for infrastructure proximal to the Taranaki summit vent. Volcanic mass flows, predominantly pyroclastic surges or block and ash flows, are most likely (probability >0.8) to affect walking tracks if an eruption occurs. The probability of one or more eruption(s) in the next 50 years is estimated at 0.35–0.38. This use of probability chains and a location centered assessment demonstrates a technique that can be applied to proximal hazard assessments globally.
- ItemProbabilistic volcanic mass flow hazard assessment using statistical surrogates of deterministic simulations(Elsevier Ltd., 2023-09-01) Mead SR; Procter J; Bebbington MProbabilistic volcanic hazard assessments require (1) an identification of the hazardous volcanic source; (2) estimation of the magnitude-frequency relationship for the volcanic process; (3) quantification of the dependence of hazard on magnitude and external conditions; and (4) estimation of hazard exceedance from the magnitude-frequency and hazard intensity relationship. For volcanic mass flows, quantification of the hazard is typically undertaken through the use of computationally expensive mass flow simulators. However, this computational expense restricts the number of samples that can be used to produce a probabilistic assessment and limits the ability to rapidly update hazard assessments in response to changing source probabilities. We develop an alternate approach to defining hazard intensity through a surrogate model that provides a continuous estimate of simulation outputs at negligible computational expense, demonstrated through a probabilistic hazard assessment of dome collapse (block-and-ash) flows at Taranaki volcano, New Zealand. A Gaussian Process emulator trained on a database of simulations is used as the surrogate model of hazard intensity across the input space of possible dome collapse volumes and configurations, which is then sampled using a volume-frequency relationship of dome collapse flows. The demonstrated technique is a tractable solution to the problem of probabilistic volcanic hazard assessment, with the surrogates providing a good approximation of the simulator, and is generally applicable to volcanic hazard and geo-hazard assessments that are limited by the demands of numerical simulations and changing source probabilities.
- ItemQuantifying location error to define uncertainty in volcanic mass flow hazard simulations(Copernicus Publications on behalf of the European Geosciences Union, 2021-08-20) Mead SR; Procter J; Kereszturi GThe use of mass flow simulations in volcanic hazard zonation and mapping is often limited by model complexity (i.e. uncertainty in correct values of model parameters), a lack of model uncertainty quantification, and limited approaches to incorporate this uncertainty into hazard maps. When quantified, mass flow simulation errors are typically evaluated on a pixel-pair basis, using the difference between simulated and observed ("actual") map-cell values to evaluate the performance of a model. However, these comparisons conflate location and quantification errors, neglecting possible spatial autocorrelation of evaluated errors. As a result, model performance assessments typically yield moderate accuracy values. In this paper, similarly moderate accuracy values were found in a performance assessment of three depth-averaged numerical models using the 2012 debris avalanche from the Upper Te Maari crater, Tongariro Volcano, as a benchmark. To provide a fairer assessment of performance and evaluate spatial covariance of errors, we use a fuzzy set approach to indicate the proximity of similarly valued map cells. This "fuzzification"of simulated results yields improvements in targeted performance metrics relative to a length scale parameter at the expense of decreases in opposing metrics (e.g. fewer false negatives result in more false positives) and a reduction in resolution. The use of this approach to generate hazard zones incorporating the identified uncertainty and associated trade-offs is demonstrated and indicates a potential use for informed stakeholders by reducing the complexity of uncertainty estimation and supporting decision-making from simulated data.
- ItemStratigraphy and lithosedimentological properties of subplinian eruptions from Mt. Taranaki, New Zealand, encompassed by the Ngaere and Pungarehu edifice collapses(Taylor and Francis Group, 2025-01-29) Mills S; Procter J; Zernack A; Mead SThe sudden removal of large portions of a volcanic edifice through collapse can cause depressurisation in the subvolcanic magmatic system, influencing the nature of subsequent eruptions. At Mt. Taranaki, edifice failure has occurred frequently and at different timescales throughout the volcanic history, forming a broad pattern of cyclic collapse and regrowth. About 20–30,000 years ago, Mt. Taranaki experienced two such cycles in short succession, emplacing the 27.3 ka Ngaere and the 24.8 ka Pungarehu debris-avalanche deposits, which were preceded and followed by a sequence of twenty-eight closely spaced tephra deposits known as the Poto and Paetahi Formations. Here, we reconstruct the tephrastratigraphic framework of the Poto and Paetahi Formations, revealing a minimum total eruptive volume of 3 km3. While eruptions directly following edifice failure were larger compared to those prior to collapse, this 4,000-year long eruptive period was characterised by consistently large subplinian eruptions. In contrast, large explosive events within the Holocene sequence are less frequent, with more multi-phase periods of effusive and explosive activity recorded. Our new data highlights the need to include longer-term eruptive records in volcanic hazard modelling since the most recent volcanic history might not cover the full nature of volcanic processes occurring at long-lived stratovolcanoes.