Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sapnik AF"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Gas adsorption in the topologically disordered Fe-BTC framework
    (Royal Society of Chemistry, 2021-11-19) Sapnik AF; Ashling CW; Macreadie LK; Lee SJ; Johnson T; Telfer SG; Bennett TD
    Disordered metal-organic frameworks are emerging as an attractive class of functional materials, however their applications in gas storage and separation have yet to be fully explored. Here, we investigate gas adsorption in the topologically disordered Fe-BTC framework and its crystalline counterpart, MIL-100. Despite their similar chemistry and local structure, they exhibit very different sorption behaviour towards a range gases. Virial analysis reveals that Fe-BTC has enhanced interaction strength with guest molecules compared to MIL-100. Most notably, we observe striking discrimination between the adsorption of C3H6 and C3H8 in Fe-BTC, with over a twofold increase in the amount of C3H6 being adsorbed than C3H8. Thermodynamic selectivity towards a range of industrially relevant binary mixtures is probed using ideal adsorbed solution theory. Together, this suggests the disordered material may possess powerful separation capabilities that are rare even amongst crystalline frameworks.

Copyright © Massey University  |  DSpace software copyright © 2002-2026 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify