Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sheahan AJ"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Supplementation of urea to a basal pasture diet fed to dairy cows to model N-partitioning relationships
    (Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association, 2021-01-01) Hendriks SJ; Lopez-Villalobos N; Sheahan AJ; Donaghy DJ; Roche JR
    The main objective of this study was to investigate whether altering dietary crude protein (CP) through the supplementation of urea to a basal pasture diet fed to dairy cows accurately modeled N-partitioning relationships. To test this, we first needed to establish safe tolerance levels for urea in this setting. Fifteen multiparous, rumen-fistulated, mid-lactation Holstein-Friesian dairy cows were offered spring pasture (~20 kg of dry matter/cow per day) and allocated to 1 of 3 urea supplementation treatments: low N [0 g/d urea; 21% total dietary CP of dry matter (DM)], medium N (350 g/d urea; 26% total dietary CP of DM), or high N (690 g/d urea; 31% total dietary CP of DM), in a completely randomized design. The amount of urea provided daily increased gradually for all cows over a 21-d period, with target urea supplementation reached by d 21. Milk yield decreased linearly at a rate of 2.35 kg/100 g of urea intake when urea supplementation exceeded 350 g/d for 4 d (~2% of DM intake). Cows from the low- and medium-N treatments subsequently entered metabolism stalls from d 25 to 31 to collect urine, feces, and milk for total N collection. Estimated urinary N output (g/d) increased linearly with N intake (g/d), and the slope of the relationship (slope = 0.86; R2 = 0.82) was consistent with international published results. Because of the consistency of our results with previously documented relationships, our findings indicate that supplementation of urea to a basal pasture diet is a suitable technique for modeling different N intakes from pasture diets to evaluate urinary N mitigation strategies. Urea supplementation, however, should not exceed ~2% of DM intake.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify