Browsing by Author "Shen X"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemClosing the Loop: A Comprehensive Review of Circular Repurposing Options for Decommissioned Wind Turbine Blade Materials(Ubiquity Press, 2024-08-14) Vishnupriya V; Meldrum J; Kahandawa R; Domingo N; Shahzad W; Shen XGrowing global concern about how to dispose of wind turbine blades has sparked an investigation into more sustainable alternatives. This research delves into finding eco-friendly solutions for managing the waste generated by wind turbine blades, specifically by exploring options for repurposing them. To put this into action, this study has focused on a New Zealand wind farm with 196 wind turbine blades at the end of its life cycle. Through a thorough review of documents, 60 potential ways were identified to repurposing these blades. Options falling under the downcycling category were excluded, thus narrowing down to 45 promising solutions to repurpose. Futher 7 practically applied global solutions are identified. Implementing these repurposing solutions would divert 331 tonnes of waste material from landfills from the New Zealand Wind Farm. This study is significant because it highlights the potential for a circular and sustainable approach and provides an example of how wind turbine blade waste can be diverted from landfill. The findings of this study contribute to practical insights and support initiatives across New Zealand to encourage the adoption of wind turbine blade repurposing. This, in turn, will foster environmentally conscious waste management practices within the renewable energy sector and promote a more sustainable future.
- ItemCooling demand reduction with nighttime natural ventilation to cool internal thermal mass under harmonic design-day weather conditions(Elsevier Ltd, 2025-02-01) Li M; Shen X; Wu W; Cetin K; Mcintyre F; Wang L; Ding L; Bishop D; Bellamy L; Liu MCooling demand is steadily increasing across different climate zones due to global warming. A potential solution for cooling demand reduction is applying nighttime natural ventilation to cool internal thermal mass. However, a simplified and accurate modelling framework to assess the technique is still missing. The goal of the study is to build that framework integrated with a validated internal thermal mass model and apply the framework to quantify the cooling demand reduction potential in a space with different thermal mass and envelope configurations and in different climate zones. Results show that using Granite as internal thermal mass is three times more effective than concrete to reduce peak cooling load. Adding too much internal thermal mass can create adverse effects on cooling load reduction. The optimum thickness of internal thermal mass is between 28 and 45 mm. Envelope construction also has an influence on the performance of nighttime cooling. Applying the technique in buildings with lightweight structures reduces peak cooling load by 35.9% more than heavyweight structures. As heavyweight structures delay the release of the daily absorbed heat and cause higher indoor air temperatures at night. The two belts between the Tropic of Cancer and 60 degrees north latitude, and between the Tropic of Capricorn and 45 degrees south latitude are suitable for nighttime natural ventilation of internal thermal mass, achieving the annual cooling demand reduction above 1.25 kWh m−2. In Dessert climate zones, the technique exhibits an extraordinary potential to reduce cooling demand, up to 6.67 kWh m−2 per year.
- ItemIndoor Particulate Matter Transfer in CNC Machining Workshop and The Influence of Ventilation Strategies—A Case Study(MDPI (Basel, Switzerland), 2023-04-04) Yao H; Qiu S; Lv Y; Wei S; Li A; Long Z; Wu W; Shen X; Daneshazarian RParticulate matter in Computer Numerical Control (CNC) machining workshop is harmful to workers’ health. This paper studies particulate matter transfer and the performance of various ventilation strategies in a CNC machining workshop. To obtain the boundary condition of the particle field, instruments were installed to obtain the particle size attenuation characteristics and source strength, respectively. The results show that the 99% cumulative mass concentration of particles is distributed within 1.5 μm, and the release rate of particles from the full enclosure. Next, the indoor flow field and particle field were simulated by numerical simulation with the measured boundary conditions. The working area’s age of air, particle concentration, and ventilation efficiency were compared between four displacement ventilation methods and one mixed ventilation method. The results show that the working area’s mean particle concentration and ventilation efficiency under longitudinal displacement ventilation is better than other methods. At the same time, the mean age of air is slightly worse. In addition, mixed ventilation can obtain lower mean age of air, but the particle concentration is higher in the working area. The bilateral longitudinal ventilation can be improved by placing axial circulation fans with vertical upward outlets in the center of the workshop.