Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Shin, Heesang"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Finding near optimum colour classifiers : genetic algorithm-assisted fuzzy colour contrast fusion using variable colour depth : a thesis presented to the Institute of Information and Mathematical Sciences in partial fulfillment of the requirements for the degree of Master of Science in Computer Science at Massey University, Albany, Auckland, New Zealand
    (Massey University, 2009) Shin, Heesang
    This thesis presents a complete self-calibrating illumination intensity-invariant colour classification system. We extend a novel fuzzy colour processing tech- nique called Fuzzy Colour Contrast Fusion (FCCF) by combining it with a Heuristic- assisted Genetic Algorithm (HAGA) for automatic fine-tuning of colour descriptors. Furthermore, we have improved FCCF’s efficiency by processing colour channels at varying colour depths in search for the optimal ones. In line with this, we intro- duce a reduced colour depth representation of a colour image while maintaining efficient colour sensitivity that suffices for accurate real-time colour-based object recognition. We call the algorithm Variable Colour Depth (VCD) and we propose a technique for building and searching a VCD look-up table (LUT). The first part of this work investigates the effects of applying fuzzy colour contrast rules to vary- ing colour depths as we extract the optimal rule combination for any given target colour exposed under changing illumination intensities. The second part introduces the HAGA-based parameter-optimisation for automatically constructing accurate colour classifiers. Our results show that for all cases, the VCD algorithm, combined with HAGA for parameter optimisation improve colour classification via a pie-slice colour classifier.For 6 different target colours, the hybrid algorithm was able to yield 17.63% higher overall accuracy as compared to the pure fuzzy approach. Fur- thermore, it was able to reduce LUT storage space by 78.06% as compared to the full-colour depth LUT.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify