Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Shippey D"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Sensitivity analysis of global food and nutrition modelling
    (Springer Nature B V on behalf of the International Society for Plant Pathology, 2025-10-18) Shippey D; Vignes M; McNabb WC; Smith NW
    Computational models are often used to explore the future of the global food system, including the implications for human nutrition, an essential aspect of sustainability. However, the confidence that can be placed in the outputs of these models is often poorly quantified. Here, a sensitivity analysis of the DELTA Model® - a linear mass balance model calculating global nutrient supply using global and regional food balance sheet, processing, waste, inedible portion, composition, and bioavailability datasets - is conducted. First, a one-at-a-time analysis, varying 4019 underpinning datapoints from the above datasets individually by ± 50% was conducted to identify those with the greatest impact on calculated global nutrient supply. The most influential values from this initial analysis were then carried forward into a multiple value sensitivity analysis, where all possible combinations of ± 50% variations were simulated. Values related to cereals supply, waste, and nutritional value were the most influential on model output, with selenium, cystine, and carbohydrate supply the most sensitive nutrients. When compared to global nutrient requirements, variations in the calculated supply of some nutrients led to qualitative changes from a sufficient global supply to an insufficient supply. These results, while indicative rather than precise estimates of uncertainty, emphasise the critical importance of accurate cereals data in food system models, provide insight on the degree of sensitivity of similar linear models, and should encourage broader application of sensitivity analysis in the field.

Copyright © Massey University  |  DSpace software copyright © 2002-2026 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify