Browsing by Author "Steinfelder RS"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCombining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations.(Springer Nature, 2023-10-02) Thomas M; Su Y-R; Rosenthal EA; Sakoda LC; Schmit SL; Timofeeva MN; Chen Z; Fernandez-Rozadilla C; Law PJ; Murphy N; Carreras-Torres R; Diez-Obrero V; van Duijnhoven FJB; Jiang S; Shin A; Wolk A; Phipps AI; Burnett-Hartman A; Gsur A; Chan AT; Zauber AG; Wu AH; Lindblom A; Um CY; Tangen CM; Gignoux C; Newton C; Haiman CA; Qu C; Bishop DT; Buchanan DD; Crosslin DR; Conti DV; Kim D-H; Hauser E; White E; Siegel E; Schumacher FR; Rennert G; Giles GG; Hampel H; Brenner H; Oze I; Oh JH; Lee JK; Schneider JL; Chang-Claude J; Kim J; Huyghe JR; Zheng J; Hampe J; Greenson J; Hopper JL; Palmer JR; Visvanathan K; Matsuo K; Matsuda K; Jung KJ; Li L; Le Marchand L; Vodickova L; Bujanda L; Gunter MJ; Matejcic M; Jenkins MA; Slattery ML; D'Amato M; Wang M; Hoffmeister M; Woods MO; Kim M; Song M; Iwasaki M; Du M; Udaltsova N; Sawada N; Vodicka P; Campbell PT; Newcomb PA; Cai Q; Pearlman R; Pai RK; Schoen RE; Steinfelder RS; Haile RW; Vandenputtelaar R; Prentice RL; Küry S; Castellví-Bel S; Tsugane S; Berndt SI; Lee SC; Brezina S; Weinstein SJ; Chanock SJ; Jee SH; Kweon S-S; Vadaparampil S; Harrison TA; Yamaji T; Keku TO; Vymetalkova V; Arndt V; Jia W-H; Shu X-O; Lin Y; Ahn Y-O; Stadler ZK; Van Guelpen B; Ulrich CM; Platz EA; Potter JD; Li CI; Meester R; Moreno V; Figueiredo JC; Casey G; Lansdorp Vogelaar I; Dunlop MG; Gruber SB; Hayes RB; Pharoah PDP; Houlston RS; Jarvik GP; Tomlinson IP; Zheng W; Corley DA; Peters U; Hsu LPolygenic risk scores (PRS) have great potential to guide precision colorectal cancer (CRC) prevention by identifying those at higher risk to undertake targeted screening. However, current PRS using European ancestry data have sub-optimal performance in non-European ancestry populations, limiting their utility among these populations. Towards addressing this deficiency, we expand PRS development for CRC by incorporating Asian ancestry data (21,731 cases; 47,444 controls) into European ancestry training datasets (78,473 cases; 107,143 controls). The AUC estimates (95% CI) of PRS are 0.63(0.62-0.64), 0.59(0.57-0.61), 0.62(0.60-0.63), and 0.65(0.63-0.66) in independent datasets including 1681-3651 cases and 8696-115,105 controls of Asian, Black/African American, Latinx/Hispanic, and non-Hispanic White, respectively. They are significantly better than the European-centric PRS in all four major US racial and ethnic groups (p-values < 0.05). Further inclusion of non-European ancestry populations, especially Black/African American and Latinx/Hispanic, is needed to improve the risk prediction and enhance equity in applying PRS in clinical practice.
- ItemIdentifying colorectal cancer caused by biallelic MUTYH pathogenic variants using tumor mutational signatures(Springer Nature Limited, 6/06/2022) Georgeson P; Harrison TA; Pope BJ; Zaidi SH; Qu C; Steinfelder RS; Lin Y; Joo JE; Mahmood K; Clendenning M; Walker R; Amitay EL; Berndt SI; Brenner H; Campbell PT; Cao Y; Chan AT; Chang-Claude J; Doheny KF; Drew DA; Figueiredo JC; French AJ; Gallinger S; Giannakis M; Giles GG; Gsur A; Gunter MJ; Hoffmeister M; Hsu L; Huang W-Y; Limburg P; Manson JE; Moreno V; Nassir R; Nowak JA; Obón-Santacana M; Ogino S; Phipps AI; Potter JD; Schoen RE; Sun W; Toland AE; Trinh QM; Ugai T; Macrae FA; Rosty C; Hudson TJ; Jenkins MA; Thibodeau SN; Winship IM; Peters U; Buchanan DDCarriers of germline biallelic pathogenic variants in the MUTYH gene have a high risk of colorectal cancer. We test 5649 colorectal cancers to evaluate the discriminatory potential of a tumor mutational signature specific to MUTYH for identifying biallelic carriers and classifying variants of uncertain clinical significance (VUS). Using a tumor and matched germline targeted multi-gene panel approach, our classifier identifies all biallelic MUTYH carriers and all known non-carriers in an independent test set of 3019 colorectal cancers (accuracy = 100% (95% confidence interval 99.87-100%)). All monoallelic MUTYH carriers are classified with the non-MUTYH carriers. The classifier provides evidence for a pathogenic classification for two VUS and a benign classification for five VUS. Somatic hotspot mutations KRAS p.G12C and PIK3CA p.Q546K are associated with colorectal cancers from biallelic MUTYH carriers compared with non-carriers (p = 2 × 10-23 and p = 6 × 10-11, respectively). Here, we demonstrate the potential application of mutational signatures to tumor sequencing workflows to improve the identification of biallelic MUTYH carriers.