Browsing by Author "Stevenson MA"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemA growing degree-day model for determination of Fasciola hepatica infection risk in New Zealand with future predictions using climate change models(Elsevier, 28/05/2016) Haydock LAJ; Pomroy WE; Stevenson MA; Lawrence KEInfections of ruminants with Fasciola hepatica are considered to be of regional importance within New Zealand but there is very little recent information on its prevalence or severity other than anecdotal reports. Generally they are considered to be of secondary importance compared to gastrointestinal nematode infections. Utilizing data from Virtual Climate Stations (n = 11491) distributed on a 5 km grid around New Zealand a growing degree-day model was used to describe the risk of infection with liver fluke from 1972-2012 and then to apply the predictions to estimate the risk of fluke infections within New Zealand for the years 2040 and 2090. The growing degree-day model was validated against the most recent survey of infection within New Zealand in 1984. A strong positive linear relationship for 1984 between F. hepatica prevalence in lambs and infection risk (p<0.001; R2 =0.71) was found indicating the model was effective for New Zealand. A linear regression for risk values from 14 regions in New Zealand for 1972-2012 did not show any discernible change in risk of infection over this time period (p>0.05). Post-hoc comparisons indicate the risk in Westland was found to be substantially higher (p<0.05) than all other regions with Northland ranked second highest. Notable predicted changes in F. hepatica infection risk in 2040 and 2090 were detected although they did vary between different climate change scenarios. The highest average percentage changes in infection risk were found in regions with low initial risk values such as Canterbury and Otago; in these regions 2090 infection risk is expected to rise by an average of 186% and 184%, respectively. Despite the already high levels of infection risk in Westland, values are expected to rise by a further 76% by 2090. The model does show some areas with little change with Taranaki predicted to experience only very minor increases in infection risk with average 2040 and 2090 predicted changes of 0% and 29%, respectively. Overall, these results suggest the significance of F. hepatica in New Zealand farming systems is probably underestimated and that this risk will generally increase with global warming following climate change.
- ItemCharacterising the drinking water microbiome on campgrounds in New Zealand(23/10/2012) Phiri BJ; Biggs PJ; Prattley DJ; Stevenson MA; Rainey PB; French NPWhole-genome, 16S and 18S ribosomal RNA (rRNA) analyses combined with conventional isolation techniques are being applied to profile microbial community DNA associated with drinking water on campgrounds. The current study has a serial cross-sectional design and is being conducted on 15 campgrounds that are situated across New Zealand (Figure 1) and are managed by the Department of Conservation (DOC). Preliminary results generally show low Escherichia coli counts in water, suggesting minimal faecal contamination, and a low proportion of faecal samples were positive for Campylobacter and Giardia.
- ItemDecision-making for foot-and-mouth disease control: Objectives matter.(2016-06) Probert WJM; Shea K; Fonnesbeck CJ; Runge MC; Carpenter TE; Dürr S; Garner MG; Harvey N; Stevenson MA; Webb CT; Werkman M; Tildesley MJ; Ferrari MJFormal decision-analytic methods can be used to frame disease control problems, the first step of which is to define a clear and specific objective. We demonstrate the imperative of framing clearly-defined management objectives in finding optimal control actions for control of disease outbreaks. We illustrate an analysis that can be applied rapidly at the start of an outbreak when there are multiple stakeholders involved with potentially multiple objectives, and when there are also multiple disease models upon which to compare control actions. The output of our analysis frames subsequent discourse between policy-makers, modellers and other stakeholders, by highlighting areas of discord among different management objectives and also among different models used in the analysis. We illustrate this approach in the context of a hypothetical foot-and-mouth disease (FMD) outbreak in Cumbria, UK using outputs from five rigorously-studied simulation models of FMD spread. We present both relative rankings and relative performance of controls within each model and across a range of objectives. Results illustrate how control actions change across both the base metric used to measure management success and across the statistic used to rank control actions according to said metric. This work represents a first step towards reconciling the extensive modelling work on disease control problems with frameworks for structured decision making.
- ItemValidation of an Indirect Immunofluorescence Assay and Commercial Q Fever Enzyme-Linked Immunosorbent Assay for Use in Macropods(American Society for Microbiology, 2022-07) Tolpinrud A; Stenos J; Chaber A-L; Devlin JM; Herbert C; Pas A; Dunowska M; Stevenson MA; Firestone SM; Barrs, VRKangaroos are considered to be an important reservoir of Q fever in Australia, although there is limited knowledge on the true prevalence and distribution of coxiellosis in Australian macropod populations. Serological tests serve as useful surveillance tools, but formal test validation is needed to be able to estimate true seroprevalence rates, and few tests have been validated to screen wildlife species for Q fever. In this study, we modified and optimized a phase-specific indirect immunofluorescence assay (IFA) for the detection of IgG antibodies against Coxiella burnetii in macropod sera. The assay was validated against the commercially available ID Screen Q fever indirect multispecies enzyme-linked immunosorbent assay (ELISA) kit (IDVet, Grabels, France) to estimate the diagnostic sensitivity and specificity of each assay, using Bayesian latent class analysis. A direct comparison of the two tests was performed by testing 303 serum samples from 10 macropod populations from the east coast of Australia and New Zealand. The analysis indicated that the IFA had relatively high diagnostic sensitivity (97.6% [95% credible interval [CrI], 88.0 to 99.9]) and diagnostic specificity (98.5% [95% CrI, 94.4 to 99.9]). In comparison, the ELISA had relatively poor diagnostic sensitivity (42.1% [95% CrI, 33.7 to 50.8]) and similar diagnostic specificity (99.2% [95% CrI, 96.4 to 100]) using the cutoff values recommended by the manufacturer. The estimated true seroprevalence of C. burnetii exposure in the macropod populations included in this study ranged from 0% in New Zealand and Victoria, Australia, up to 94.2% in one population from New South Wales, Australia.
- ItemWater quality, metagenomics and the microbial community in DOC campground waterPhiri BJ; French NP; Rainey PB; Stevenson MA; Prattley DJ; Biggs PJ