Browsing by Author "Szymanski MK"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item KMT-2021-BLG-0284, KMT-2022-BLG-2480, and KMT-2024-BLG-0412: Three microlensing events involving two lens masses and two source stars(EDP Sciences for The European Southern Observatory, 2024-12) Han C; Udalski A; Bond IA; Lee C-U; Gould A; Albrow MD; Chung S-J; Hwang K-H; Jung YK; Ryu Y-H; Shvartzvald Y; Shin I-G; Yee JC; Yang H; Zang W; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Mróz P; Szymanski MK; Skowron J; Poleski R; Soszynski I; Pietrukowicz P; Kozłowski S; Rybicki KA; Iwanek P; Ulaczyk K; Wrona M; Gromadzki M; Mróz MJ; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hirao Y; Ishitani Silva S; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita KAims. We carried out a project involving the systematic analysis of microlensing data from the Korea Microlensing Telescope Network survey. The aim of this project is to identify lensing events with complex anomaly features that are difficult to explain using standard binary-lens or binary-source models. Methods. Our investigation reveals that the light curves of microlensing events KMT-2021-BLG-0284, KMT-2022-BLG-2480, and KMT-2024BLG-0412 display highly complex patterns with three or more anomaly features. These features cannot be adequately explained by a binary-lens (2L1S) model alone. However, the 2L1S model can effectively describe certain segments of the light curve. By incorporating an additional source into the modeling, we identified a comprehensive model that accounts for all the observed anomaly features. Results. Bayesian analysis, based on constraints provided by lensing observables, indicates that the lenses of KMT-2021-BLG-0284 and KMT-2024-BLG-0412 are binary systems composed of M dwarfs. For KMT-2022-BLG-2480, the primary lens is an early K-type main-sequence star with an M dwarf companion. The lenses of KMT-2021-BLG-0284 and KMT-2024-BLG-0412 are likely located in the bulge, whereas the lens of KMT-2022-BLG-2480 is more likely situated in the disk. In all events, the binary stars of the sources have similar magnitudes due to a detection bias favoring binary source events with a relatively bright secondary source star, which increases detection efficiency.Item OGLE-2015-BLG-0845L: a low-mass M dwarf from the microlensing parallax and xallarap effects(Oxford University Press, 2024-09-01) Hu Z; Zhu W; Gould A; Udalski A; Sumi T; Chen P; Calchi Novati S; Yee JC; Beichman CA; Bryden G; Carey S; Fausnaugh M; Scott Gaudi B; Henderson CB; Shvartzvald Y; Wibking B; Mroz P; Skowron J; Poleski R; Szymanski MK; Soszynski I; Pietrukowicz P; Kozłowski S; Ulaczyk K; Rybicki KA; Iwanek P; Wrona M; Gromadzki MG; Abe F; Barry R; Bennett DP; Bhattacharya A; Bond IA; Fujii H; Fukui A; Hamada R; Hirao Y; Silva SI; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita KWe present the analysis of the microlensing event OGLE-2015-BLG-0845, which was affected by both the microlensing parallax and xallarap effects. The former was detected via the simultaneous observations from the ground and Spitzer, and the latter was caused by the orbital motion of the source star in a relatively close binary. The combination of these two effects led to a mass measurement of the lens object, revealing a low-mass (0.14 ± 0.05 M) M dwarf at the bulge distance (7.6 ± 1.0 kpc). The source binary consists of a late F-type subgiant and a K-type dwarf of ∼ 1.2 and ∼ 0.9M, respectively, and the orbital period is 70 ± 10 d. OGLE-2015-BLG-0845 is the first single-lens event in which the lens mass is measured via the binarity of the source. Given the abundance of binary systems as potential microlensing sources, the xallarap effect may not be a rare phenomenon. Our work thus highlights the application of the xallarap effect in the mass determination of microlenses, and the same method can be used to identify isolated dark lenses.Item Systematic KMTNet planetary anomaly search: V. Complete sample of 2018 prime-field(EDP Sciences, 2022-08-08) Gould A; Han C; Zang W; Yang H; Hwang K-H; Udalski A; Bond IA; Albrow MD; Chung S-J; Jung YK; Ryu Y-H; Shin I-G; Shvartzvald Y; Yee JC; Cha S-M; Kim D-J; Kim H-W; Kim S-L; Lee C-U; Lee D-J; Lee Y; Park B-G; Pogge RW; Mróz P; Szymanski MK; Skowron J; Poleski R; Soszyński I; Pietrukowicz P; Kozłowski S; Ulaczyk K; Rybicki KA; Iwanek P; Wrona M; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hirao Y; Silva SI; Kirikawa R; Kondo I; Koshimoto N; Matsubara Y; Matsumoto S; Miyazaki S; Muraki Y; Okamura A; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Toda T; Tristram PJ; Vandorou A; Yama H; Beichman C; Bryden G; Novati SC; Gaudi BS; Henderson CB; Penny MT; Jacklin S; Stassun KGWe complete the analysis of all 2018 prime-field microlensing planets identified by the Korea Microlensing Telescope Network (KMTNet) Anomaly Finder. Among the ten previously unpublished events with clear planetary solutions, eight are either unambiguously planetary or are very likely to be planetary in nature: OGLE-2018-BLG-1126, KMT-2018-BLG-2004, OGLE-2018-BLG-1647, OGLE-2018-BLG-1367, OGLE-2018-BLG-1544, OGLE-2018-BLG-0932, OGLE-2018-BLG-1212, and KMT-2018-BLG-2718. Combined with the four previously published new Anomaly Finder events and 12 previously published (or in preparation) planets that were discovered by eye, this makes a total of 24 2018 prime-field planets discovered or recovered by Anomaly Finder. Together with a paper in preparation on 2018 subprime planets, this work lays the basis for the first statistical analysis of the planet mass-ratio function based on planets identified in KMTNet data. By systematically applying the heuristic analysis to each event, we identified the small modification in their formalism that is needed to unify the so-called close-wide and inner-outer degeneracies.

