SCHEDULED SYSTEM MAINTENANCE – Monday 6 October to Tuesday 7 October 2025. We expect no disruption to services. For further assistance please contact the Library team, library@massey.ac.nz
Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tangjaidee P"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Extraction, Enzymatic Modification, and Anti-Cancer Potential of an Alternative Plant-Based Protein from Wolffia globosa
    (MDPI (Basel, Switzerland), 2023-10-18) Siriwat W; Ungwiwatkul S; Unban K; Laokuldilok T; Klunklin W; Tangjaidee P; Potikanond S; Kaur L; Phongthai S; Iacopetta D
    The global plant-based protein demand is rapidly expanding in line with the increase in the world's population. In this study, ultrasonic-assisted extraction (UAE) was applied to extract protein from Wolffia globosa as an alternative source. Enzymatic hydrolysis was used to modify the protein properties for extended use as a functional ingredient. The successful optimal conditions for protein extraction included a liquid to solid ratio of 30 mL/g, 25 min of extraction time, and a 78% sonication amplitude, providing a higher protein extraction yield than alkaline extraction by about 2.17-fold. The derived protein was rich in essential amino acids, including leucine, valine, and phenylalanine. Protamex and Alcalase were used to prepare protein hydrolysates with different degrees of hydrolysis, producing protein fragments with molecular weights ranging between <10 and 61.5 kDa. Enzymatic hydrolysis caused the secondary structural transformations of proteins from β-sheets and random coils to α-helix and β-turn structures. Moreover, it influenced the protein functional properties, particularly enhancing the protein solubility and emulsifying activity. Partial hydrolysis (DH3%) improved the foaming properties of proteins; meanwhile, an excess hydrolysis degree reduced the emulsifying stability and oil-binding capacity. The produced protein hydrolysates showed potential as anti-cancer peptides on human ovarian cancer cell lines.
  • Loading...
    Thumbnail Image
    Item
    Partial hydrolyzed protein as an alternative stabilizer for peanut (Arachis hypogaea) butter
    (Elsevier Ltd, 2025-07-01) Thongkong S; Rakairyatham K; Tangjaidee P; Unban K; Klangpetch W; Phimolsiripol Y; Rachtanapun P; Rawdkuen S; Singh J; Kaur L; Issara U; Kingwascharapong P; Phongthai S
    Peanut protein hydrolysates with varying degrees of hydrolysis (DH) were prepared by using Alcalase and Flavourzyme. The enzymatic hydrolysis highly influenced a transformation of protein secondary structures, particularly from β-sheet to β-turn structures (11–21 %). The DH impacted functional properties and anti-free radicals' activity of peanut protein hydrolysates. Flavourzyme-derived protein hydrolysate (FPH) with DH5% had the maximum potential as an emulsifier (54.50 ± 0.71 %, p < 0.05). The effectiveness of protein hydrolysates in preventing the oil separation and enhancing the oxidative stability of peanut butter was dependent on the type of enzyme and DH. The inclusion of partial hydrolyzed protein (DH5%) produced by the Alcalase (APH) substantially decreased the occurrence of oil separation; whereas FPH with DH5% significantly retarded increment of PV, TBARs, CD in peanut butter during the storage period (p < 0.05). This study indicated the possible use of partial hydrolyzed proteins as a stabilizer in peanut butter by slowing lipid oxidation and increasing oil entrapment.
  • Loading...
    Thumbnail Image
    Item
    Pulsed Electric Field for Quick-Cooking Rice: Impacts on Cooking Quality, Physicochemical Properties, and In Vitro Digestion Kinetics
    (MDPI (Basel, Switzerland), 2024-11-17) Thongkong S; Kraithong S; Singh J; Tangjaidee P; Yawootti A; Klangpetch W; Rachtanapun P; Rawdkuen S; Phongthai S; Mortas M
    Pulsed electric field (PEF) is one of the emerging technologies that has been applied in many aspects of the food industry. This study examined the impacts of a PEF on the cooking quality, physicochemical properties, nutritional factors, and in vitro protein and starch digestion of two varieties of rice, including Jasmine 105 (white non-glutinous rice) and San Pa Tong 1 (white glutinous rice). Response surface methodology (RSM) and a three-level, three-factor Box–Behnken design were employed to assess the effects of the pulse number, electric field strength, and frequency on cooking time. The findings demonstrated that the number of pulses was a crucial factor influencing cooking time. Under optimal conditions (3347–4345 pulses, electric field strengths of 6–8 kV/cm, and frequencies ranging from 6 to 15 Hz), the rice cooking time was significantly reduced by 40–50% (p < 0.05) when compared to a conventional method. Moreover, PEF-treated rice showed a significant enhancement in in vitro protein and starch digestibility (p < 0.05), as well as retained a higher content of rapidly digestible starch. These results suggested that PEF treatment is a promising green technology for producing a novel quick-cooking rice with an improved eating quality.
  • Loading...
    Thumbnail Image
    Item
    Unveiling anti-inflammatory peptides from Lion's Mane mushroom (Hericium erinaceus): Preparation, bioactivity assessment, and peptides identification
    (Elsevier B V, 2025-12-01) Silva B; Sringarm K; Potikanond S; Tangjaidee P; Buacheen P; Rachtanapun P; Donlao N; Singh J; Kaur L; Issara U; Kingwascharapong P; Phongthai S
    Lion's Mane mushroom (Hericium erinaceus) is acknowledged worldwide for its substantial contribution of medicinal compounds and nutrients, including protein. The efficient extraction and hydrolysis of proteins are essential for revealing their bioactive properties. This study demonstrates that the optimal pulsed electric field (PEF)-assisted extraction achieved a 42.44 % increase in protein extraction efficiency relative to traditional alkaline extraction (p < 0.05). H. erinaceus protein contained 44.59 % essential amino acids and exhibited 71.33 % in vitro digestibility. Pepsin-trypsin hydrolysis produced the most significant anti-inflammatory activity, resulting in a 36.2 % reduction in nitric oxide and a 31.8 % decrease in interleukin-6 levels (p < 0.05). Subsequent fractionations employing membrane ultrafiltration and size exclusion chromatography effectively purified the peptides, resulting in enhanced anti-inflammatory activity (p < 0.05). This research discovered nine important peptide sequences containing 50–100 % hydrophobic amino acids in Lion's Mane mushroom proteins, which could aid in the synthesis of natural anti-inflammatory peptides.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings