Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tunnicliffe M"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The Application of Machine Learning to Consolidate Critical Success Factors of Lean Six Sigma
    (IEEE, 17/08/2021) Perera AD; Jayamaha NP; Grigg NP; Tunnicliffe M; Singh A
    Lean six sigma (LSS) is a quality improvement phenomenon that has captured the attention of the industry. Aiming at a capability level of 3.4 defects per million opportunities (Six Sigma) and efficient (lean) processes, LSS has been shown to improve business efficiency and customer satisfaction by blending the best methods from Lean and Six Sigma (SS). Many businesses have attempted to implement LSS, but not everyone has succeeded in improving the business processes to achieve expected outcomes. Hence, understanding the cause and effect relationships of the enablers of LSS, while deriving deeper insights from the functioning of the LSS strategy will be of great value for effective execution of LSS. However, there is little research on the causal mechanisms that explain how expected outcomes are caused through LSS enablers, highlighting the need for comprehensive research on this topic. LSS literature is overwhelmed by the diverse range of Critical Success Factors (CSFs) prescribed by a plethora of conceptual papers, and very few attempts have been made to harness these CSFs to a coherent theory on LSS. We fill this gap through a novel method using artificial intelligence, more specifically Natural Language Processing (NLP), with particular emphasis on cross-domain knowledge utilization to develop a parsimonious set of constructs that explain the LSS phenomenon. This model is then reconciled against published models on SS to develop a final testable model that explains how LSS elements cause quality performance, customer satisfaction, and business performance.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings