Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Vercammen A"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Predicting the replicability of social and behavioural science claims in COVID-19 preprints
    (Springer Nature Limited, 2024-12-20) Marcoci A; Wilkinson DP; Vercammen A; Wintle BC; Abatayo AL; Baskin E; Berkman H; Buchanan EM; Capitán S; Capitán T; Chan G; Cheng KJG; Coupé T; Dryhurst S; Duan J; Edlund JE; Errington TM; Fedor A; Fidler F; Field JG; Fox N; Fraser H; Freeman ALJ; Hanea A; Holzmeister F; Hong S; Huggins R; Huntington-Klein N; Johannesson M; Jones AM; Kapoor H; Kerr J; Kline Struhl M; Kołczyńska M; Liu Y; Loomas Z; Luis B; Méndez E; Miske O; Mody F; Nast C; Nosek BA; Simon Parsons E; Pfeiffer T; Reed WR; Roozenbeek J; Schlyfestone AR; Schneider CR; Soh A; Song Z; Tagat A; Tutor M; Tyner AH; Urbanska K; van der Linden S
    Replications are important for assessing the reliability of published findings. However, they are costly, and it is infeasible to replicate everything. Accurate, fast, lower-cost alternatives such as eliciting predictions could accelerate assessment for rapid policy implementation in a crisis and help guide a more efficient allocation of scarce replication resources. We elicited judgements from participants on 100 claims from preprints about an emerging area of research (COVID-19 pandemic) using an interactive structured elicitation protocol, and we conducted 29 new high-powered replications. After interacting with their peers, participant groups with lower task expertise ('beginners') updated their estimates and confidence in their judgements significantly more than groups with greater task expertise ('experienced'). For experienced individuals, the average accuracy was 0.57 (95% CI: [0.53, 0.61]) after interaction, and they correctly classified 61% of claims; beginners' average accuracy was 0.58 (95% CI: [0.54, 0.62]), correctly classifying 69% of claims. The difference in accuracy between groups was not statistically significant and their judgements on the full set of claims were correlated (r(98) = 0.48, P < 0.001). These results suggest that both beginners and more-experienced participants using a structured process have some ability to make better-than-chance predictions about the reliability of 'fast science' under conditions of high uncertainty. However, given the importance of such assessments for making evidence-based critical decisions in a crisis, more research is required to understand who the right experts in forecasting replicability are and how their judgements ought to be elicited.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify