Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Walker, Matthew Garry William"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Developing and evaluating incremental evolution using high quality performance measures for genetic programming : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosphy in Computer Science at Massey University, Albany, Auckland, New Zealand
    (Massey University, 2007) Walker, Matthew Garry William
    This thesis is divided into two parts. The first part considers and develops some of the statistics used in genetic programming (GP) while the second uses those statistics to study and develop a form of incremental evolution and an early termination heuristic for GP. The first part looks in detail at success proportion, Koza's minimum computational effort, and a measure we rename "success effort". We describe and develop methods to produce confidence intervals for these measures as well as confidence intervals for the difference and ratio of these measures. The second part studies Jackson's fitness-based incremental evolution. If the number of fitness evaluations are considered (rather than the number of generations) then we find some potential benefit through reduction in the effort required to find a solution. We then automate the incremental evolution method and show a statistically significant improvement compared to GP with automatically defined functions (ADFs). The success effort measure is shown to have the critical advantage over Koza's measure as it has the ability to include a decreasing cost of failure. We capitalise on this advantage by demonstrating an early termination heuristic that again offers a statistically significant advantage.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify