Browsing by Author "Wang X-Y"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDevelopment of Biphasic Culture System for an Entomopathogenic Fungus Beauveria bassiana PfBb Strain and Its Virulence on a Defoliating Moth Phauda flammans (Walker)(MDPI (Basel, Switzerland), 2025-03-05) Gao Y-P; Shi D-X; Li Y-H; He XZ; Wang X-Y; Lin K; Zheng X-LBeauveria bassiana PfBb is a new strain with high host specificity to the target pest Phauda flammans. We conducted a series of experiments to optimize the biphasic fermentation system of B. bassiana PfBb by screening the medium compositions and fermentation environmental conditions in both liquid and solid fermentations. In the liquid fermentation, glucose and yeast extract with a C:N ratio of 17:1 were the optimal carbon and nitrogen sources, respectively, for B. bassiana PfBb mycelium growth and blastospore production, and liquid fermentation with an inoculation concentration of 1 × 108/mL and an inoculum content of 50 mL conidial suspension, at 180 rpm/min rotation speed, pH 7 and 26 °C, favored mycelium growth. However, additional trace elements did not significantly improve liquid fermentation. In the solid fermentation, wheat bran and chaff at a ratio of 8:2 were identified as the best substrates that facilitated B. bassiana PfBb sporulation and conidial germination, and optimal substrates with 20% inoculum content, 50% water content, and 3-day fermentation in darkness had the highest conidia yield. The resulting conidia, stored at −20, 4, and 20 °C for one year, did not significantly change the water content, and with prolonged storage duration, conidial germination was significantly higher at −20 and 4 °C. Moreover, conidia stored at 4 °C for one year maintained its validity and virulence, which were toxic to all instar larvae of P. flammans. Our results provide essential support for the commercial production of B. bassiana PfBb-based biopesticides.
- ItemPathogenicity of Beauveria bassiana PfBb and Immune Responses of a Non-Target Host, Spodoptera frugiperda (Lepidoptera: Noctuidae)(MDPI AG, 8/10/2022) Gao Y-P; Luo M; Wang X-Y; He X; Lu W; Zheng X-LExploring the pathogenicity of a new fungus strain to non-target host pests can provide essential information on a large scale for potential application in pest control. In this study, we tested the pathogenicity of Beauveria bassiana PfBb on the important agricultural pest Spodoptera frugiperda (Lepidoptera: Noctuidae) by determining the relative activities of protective enzymes and detoxifying enzymes in different larval instars. Our results show that the B. bassiana PfBb strain could infect all six larval instars of S. frugiperda, and its virulence to S. frugiperda larvae gradually increased with an increase in spore concentration. Seven days after inoculation, the LC50 of B. bassiana PfBb was 7.7 × 105, 5.5 × 106, 2.2 × 107, 3.1 × 108, 9.6 × 108, and 2.5 × 1011 spores/mL for first to sixth instars of S. frugiperda, respectively, and the LC50 and LC90 of B. bassiana PfBb for each S. frugiperda instar decreased with infection time, indicating a significant dose effect. Furthermore, the virulence of B. bassiana PfBb to S. frugiperda larvae gradually decreased with an increase in larval instar. The activities of protective enzymes (i.e., catalase, peroxidase, and superoxide dismutase) and detoxifying enzymes (i.e., glutathione S-transferases, carboxylesterase, and cytochrome P450) in S. frugiperda larvae of the first three instars infected with B. bassiana PfBb changed significantly with infection time, but such variations were not obvious in the fifth and sixth instars. Additionally, after being infected with B. bassiana PfBb, the activities of protective enzymes and detoxification enzymes in S. frugiperda larvae usually lasted from 12 to 48 h, which was significantly longer than the control. These results indicate that the pathogenicity of B. bassiana PfBb on the non-target host S. frugiperda was significant but depended on the instar stage. Therefore, the findings of this study suggest that B. bassiana PfBb can be used as a bio-insecticide to control young larvae of S. frugiperda in an integrated pest management program.