Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ward, A. D."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    On essential self-adjointness, confining potentials & the Lp-Hardy inequality : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Albany, New Zealand
    (Massey University, 2014) Ward, A. D.
    Let Ω be a domain in Rm with non-empty boundary and let H = -Δ + V be a Schrödinger operator defined on C[symbol](Ω) where V E L[symbol](Ω). We seek the minimal criteria on the potential V that ensures that H is essentially self-adjoint, i.e. that ensures the closed operator H is self-adjoint. Overcoming various technical problems, we extend the results of Nenciu & Nenciu in [1] to more general types of domain, specifically unbounded domains and domains whose boundaries are fractal. As a special case of an abstract condition we show that H is essentially self-adjoint provided that sufficiently close to the boundary [equation] where d(x) = dist(x;δΩ) and the right hand side of the above inequality contains a f nite number of logarithmic terms. The constant μ2(Ω ) appearing in (1) is the variational constant associated with the L2-Hardy inequality and is non-zero if and only if Ω admits the aforementioned inequality. Our results indicate that the existence of an L2-Hardy nequality, and the specific value of μ2(Ω), depend intimately on the (Hausdorff / Aikawa) dimension of the boundary. In certain cases where Ω is geometrically simple, this constant, as well as the constant `1' appearing in front of each logarithmic term, is shown to be optimal with regards to the essential self-adjointness of H.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify