Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ward A"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Comparing vegetative growth patterns of cultivated (Daucus carota L. subsp. sativus) and wild carrots (Daucus carota L. subsp. carota) to eliminate genetic contamination from weed to crop
    (Elsevier B.V., 2024-05-20) Godwin A; Pieralli S; Sofkova-Bobcheva S; Ward A; McGill C
    Wild carrot is a problematic weed that can threaten the genetic purity of cultivated carrots by hybridization. Wild carrots must be controlled before flowering to avoid the undesirable crossing with cultivated carrots. Understanding wild carrot's vegetative growth pattern helps formulate sustainable weed management practices. However, little is known about the vegetative growth patterns of wild and cultivated carrots. A pot experiment was carried out to compare and model the vegetative growth pattern of different morphological traits in both wild and cultivated carrots. This study was executed in a glasshouse located in Palmerston North, New Zealand. A factorial randomized complete block design (RCBD) with two factors and four replications was used. The first factor was assigned to the carrot genotype (cultivated and wild) and the second factor to length of juvenile stages (12-weeks, 8-weeks, and 4-weeks). Plant height, leaf number, shoot fresh and dry weight, root fresh and dry weight, root diameter and root length were measured. Data were analyzed using analysis of variance (ANOVA), principal component analysis (PCA), correlation, and regression analysis. At the 8-week juvenile stage (9–11 leaves stage), wild carrot's shoot and root characteristics exhibited rapid growth. Correlation analysis indicated positive and significant (p < 0.05) correlations between above and below-ground morphological traits. PCA showed that morphological characteristics, except plant height, can be used to distinguish wild and cultivated carrots. To predict the vegetative growth pattern of most of the morphological traits of wild and cultivated carrots, power regression models were selected based on higher R2 and adj-R2 values and lower values of RMSE, AIC and BIC. The study showed wild carrots grew more quickly than cultivated carrots during the vegetative phase. It is recommended that appropriate weed management practices, such as hoeing, tilling, hand pulling, or herbicide spraying, be implemented before wild carrot leaf stages 9–11.
  • Loading...
    Thumbnail Image
    Item
    Phenological phase affects carrot seed production sensitivity to climate change - A panel data analysis
    (Elsevier BV, 2023-09-20) Godwin A; McGill C; Ward A; Sofkova-Bobcheva S; Pieralli S; Paoletti E
    New Zealand is a major producer of carrot seeds globally. Carrots are an important nutritional crop for human consumption. Since the growth and development of carrot seed crops mainly depend on climatic factors, seed yield is extremely susceptible to climate change. This modeling study was undertaken using a panel data approach to determine the impact of the atmospheric conditions (proxied by maximum and minimum temperature) and precipitation during the critical growth stages for seed production in carrot, viz., juvenile phase, vernalization phase, floral development phase, and flowering and seed development phase on carrot seed yield. The panel dataset was created using cross-sections from 28 locations within the Canterbury and Hawke's Bay regions of New Zealand that cultivate carrot seed crops and time series from 2005 to 2022. Pre-diagnostic tests were performed to test the model assumptions, and a fixed effect model was selected subsequently. There was significant (p < 0.01) variability in temperature and rainfall throughout different growing phases, except for precipitation at the vernalization phase. The highest rate of changes in maximum temperature, minimum temperature, and precipitation were recorded during the vernalization phase (+0.254 °C per year), floral development phase (+0.18 °C per year), and juvenile phase (-6.508 mm per year), respectively. Based on marginal effect analysis, the highest significant influence of minimum (187.724 kg/ha of seed yield decrease for each 1 °C increment) and maximum temperature (1 °C rise increases seed yield by 132.728 kg/ha), and precipitation (1 mm increment of rainfall decreases the seed yield by 1.745 kg/ha) on carrot seed yield were reported at vernalization, and flowering and seed development, respectively. The minimum and maximum temperatures have a higher marginal effect on carrot seed production. Analysis of the panel data demonstrates that the production of carrot seeds will be vulnerable to climatic change.
  • Loading...
    Thumbnail Image
    Item
    Pollen-mediated gene flow from wild carrots (Daucus carota L. subsp. carota) affects the production of commercial carrot seeds (Daucus carota L. subsp. sativus) internationally and in New Zealand in the context of climate change: A systematic review
    (Elsevier BV, 2024-07-10) Godwin A; Pieralli S; Sofkova-Bobcheva S; Ward A; McGill C; Paoletti E
    Climate change will impact the carrot seed industry globally. One adaptation strategy to limit climatic impacts on the production of commercial carrot seeds is geographical shift. However, production must be shifted to climate-optimal places that are free from weeds such as wild carrots to avoid genetic contamination via hybridization. The process of gene flow between wild and cultivated carrots is critical to enable management of wild carrots in the face of climate change. This review systematically assesses the resilience of wild carrots to climate change and their impact on commercial carrot seed production globally with a focus on New Zealand as a major carrot seed producer. The literature was critically analyzed based on three specific components: i) resilience of wild carrots to climate change ii) genetic contamination between wild and cultivated carrots, and iii) management of wild carrots. The majority of the articles were published between 2013 and 2023 (64.71 %), and most of these studies were conducted in Europe (37.26 %) and North America (27.45 %). Country-wise analysis demonstrated that the majority of the studies were carried out in the United States (23.53 %) and the Netherlands (11.77 %). There was limited research conducted in other regions, especially in Oceania (1.96 %). Spatial distribution analysis revealed that the wild carrot was reported in around 100 countries. In New Zealand the North Island has a higher incidence of wild carrot invasion than the South Island. The findings indicated that the wild carrot is becoming more adaptable to climate change, compromising the genetic purity of cultivated carrots due to pollen flow from wild to cultivated carrots. Therefore, ongoing research will be helpful in developing sustainable weed management strategies and predicting potential geographical invasiveness. This study provides a guide for scientists, policymakers, industrialists, and farmers to control wild carrots and produce genetically pure commercial seeds amid climate change.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings