Browsing by Author "White JDL"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemRuapehu and Tongariro stratovolcanoes: a review of current understanding(Taylor and Francis Group on behalf of GNS Science Ltd, 2021-05-02) Leonard GS; Cole RP; Christenson BW; Conway CE; Cronin SJ; Gamble JA; Hurst T; Kennedy BM; Miller CA; Procter JN; Pure LR; Townsend DB; White JDL; Wilson CJNRuapehu (150 km3 cone, 150 km3 ring-plain) and Tongariro (90 km3 cone, 60 km3 ring-plain) are iconic stratovolcanoes, formed since ∼230 and ∼350 ka, respectively, in the southern Taupo Volcanic Zone and Taupo Rift. These volcanoes rest on Mesozoic metasedimentary basement with local intervening Miocene sediments. Both volcanoes have complex growth histories, closely linked to the presence or absence of glacial ice that controlled the distribution and preservation of lavas. Ruapehu cone-building vents are focused into a short NNE-separated pair, whereas Tongariro vents are more widely distributed along that trend, the differences reflecting local rifting rates and faulting intensities. Both volcanoes have erupted basaltic andesite to dacite (53–66 wt.% silica), but mostly plagioclase-two pyroxene andesites from storage zones at 5–10 km depth. Erupted compositions contain evidence for magma mixing and interaction with basement rocks. Each volcano has an independent magmatic system and a growth history related to long-term (>104 years) cycles of mantle-derived magma supply, unrelated to glacial/interglacial cycles. Historic eruptions at both volcanoes are compositionally diverse, reflecting small, dispersed magma sources. Both volcanoes often show signs of volcanic unrest and have erupted with a wide range of styles and associated hazards, most recently in 2007 (Ruapehu) and 2012 (Tongariro).
- ItemVariable controlling factors lead to contrasting patterns of volcanism in the Changbaishan volcanic area (Tianchi-Longgang), China-North Korea: Insights from morphometry and spatial-temporal analyses(Elsevier B V, Amsterdam, 2024-07-01) Zhang R; Brenna M; White JDL; Kereszturi GThe coexistence of monogenetic and polygenetic volcanoes is a common phenomenon in volcanic areas. However, the genetic relationship between monogenetic and polygenetic systems and the factors controlling their distinct eruptive styles are not well understood. In active volcanic areas, analysing the clustering and vent alignment of monogenetic volcanoes, as well as examining the geomorphology and relative ages of scoria cones, offers quantitative insights into magma supply rates, volcano type distribution, and volcanic development trends. Our study presents geomorphological and spatio-temporal analyses of the co-existing monogenetic volcanoes in the Longgang Volcanic Field (LVF) and those associated with a polygenetic volcano (Tianchi) in the Changbaishan Volcanic Area, China. The distance between the two volcanic areas is around 150 km. Monogenetic vents in the LVF exhibit greater density compared to the dispersed system associated with Tianchi. The LVF vents also show better alignment, particularly in the direction of pre-existing basement faults (NE-SW, NW-SE and EW). By using scoria cone morphometric parameters and features, we estimated the relative ages and erupted volumes of monogenetic volcanoes in the LVF and the Tianchi area. We classified the cones of the two volcanic systems into five eruptive periods and found that, despite similar magma sources and output rates over approximately 870 kyr, differing numbers of scoria cones across age classes suggest that Tianchi's magma system influences its associated monogenetic volcanic plumbing. Furthermore, the continuous rise in output rates of monogenetic volcanoes in the Tianchi area highlights the increasing magma supply sustaining Tianchi volcano. Together, these interpretations are consistent with the two systems being controlled by different factors: the Tianchi monogenetic volcanic system is more controlled by magmatism, whereas the LVF is more strongly controlled by local tectonic structures, alongside an increasing magma supply causing the formation of progressively larger individual volcanoes. In volcanic areas, analysing monogenetic volcanoes' spatial-temporal distribution, volumes and recurrence rate provides a framework to evaluate magma supply rates and tectonic associations, which are key to the development of different volcano types.