SCHEDULED SYSTEM MAINTENANCE – Monday 6 October to Tuesday 7 October 2025. We expect no disruption to services. For further assistance please contact the Library team, library@massey.ac.nz
Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Williams BLM"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The Impact of Building Level of Detail Modelling Strategies: Insights into Building and Urban Energy Modelling
    (MDPI (Basel, Switzerland), 2024-09-11) Bishop D; Mohkam M; Williams BLM; Wu W; Bellamy L; Torgal FP
    Level of detail (LoD) is an important factor in urban building energy modelling (UBEM), affecting functionality and accuracy. This work assesses the impacts of the LoD of the roof, window, and zoning on a comprehensive range of outcomes (annual heating load, peak heating demand, overheating, and time-series heating error) in a representative New Zealand house. Lower-LoD roof scenarios produce mean absolute error results ranging from 1.5% for peak heating power to 99% for overheating. Windows and shading both affect solar gains, so lower-LoD windows and/or shading elements can considerably reduce model accuracy. The LoD of internal zoning has the greatest effect on time-series accuracy, producing mean absolute heating error of up to 66 W. These results indicate that low-LoD “shoebox” models, common in UBEM, can produce significant errors which aggregate at scale. Accurate internal zoning models and accurate window size and placement have the greatest potential for error reduction, but their implementation is limited at scale due to data availability and automation barriers. Conversely, modest error reductions can be obtained via simple model improvements, such as the inclusion of eaves and window border shading. Overall, modellers should select LoD elements according to specific accuracy requirements.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings