Browsing by Author "Wiltafsky-Martin M"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemApplication of Apparent Metabolizable Energy versus Nitrogen-Corrected Apparent Metabolizable Energy in Poultry Feed Formulations: A Continuing Conundrum(MDPI (Basel, Switzerland), 2021-08) Abdollahi MR; Wiltafsky-Martin M; Ravindran VIn the present investigation, N retention, AME, and AMEn data from six energy evaluation assays, involving four protein sources (soybean meal, full-fat soybean, rapeseed meal and maize distiller’s dried grains with solubles [DDGS]), are reported. The correction for zero N retention, reduced the AME value of soybean meal samples from different origins from 9.9 to 17.8% with increasing N retention. The magnitude of AME penalization in full-fat soybean samples, imposed by zero N correction, increased from 1.90 to 9.64% with increasing N retention. The Δ AME (AME minus AMEn) in rapeseed meal samples increased from 0.70 to 1.09 MJ/kg as N-retention increased. In maize DDGS samples, the correction for zero N retention increased the magnitude of AME penalization from 5.44 to 8.21% with increasing N retention. For all protein sources, positive correlations (p < 0.001; r = 0.831 to 0.991) were observed between the N retention and Δ AME. The present data confirms that correcting AME values to zero N retention for modern broilers penalizes the energy value of protein sources and is of higher magnitude for ingredients with higher protein quality. Feed formulation based on uncorrected AME values could benefit least cost broiler feed formulations and merits further investigation.
- ItemInfluence of Conditioning and Expansion Characteristics on the Apparent Metabolizable Energy and Standardized Ileal Amino Acid Digestibility of Full-Fat Soybeans for Broilers(MDPI (Basel, Switzerland), 2022-04) Abdollahi MR; Wiltafsky-Martin M; Zaefarian F; Ravindran VThis study investigated the influence of short-term and long-term conditioning and expansion on the nitrogen-corrected apparent metabolizable energy (AMEn) and standardized ileal digestibility (SID) of amino acids (AA) in full-fat soybeans (FFSB) for broilers. A batch of raw soybeans was used to manufacture 10 FFSB products (T0 to T9) by applying various combinations of conditioning and expansion. The AMEn and SID AA of FFSB were determined by difference and direct methods, respectively. All heat treatments increased (p < 0.001) the AMEn compared to raw FFSB. The sample subjected to long-term conditioning at 100 °C for 6 min and expansion at 18 kWh/t (T5) supported 3.88 MJ/kg higher AMEn than the raw FFSB. Raw FFSB had the poorest (p < 0.05) AA digestibility. Among the heat-treated samples, the highest (p < 0.05) SID AA was recorded for T5. The results demonstrated that the long-term conditioning of FFSB at 100 °C for 6 min prior to expansion with 18 kWh/t specific energy input enhanced metabolizable energy and SID AA. Further increases in conditioning time from 6 to 9 min or expansion of specific energy input from 18 to 28 kWh/t did not yield additional benefits to energy utilization and AA digestibility of FFSB.
- ItemMetabolizable energy and standardized ileal amino acid digestibility of full-fat soybeans for broilers are influenced by wet-heating, expansion temperature, and autoclaving time(Elsevier Inc. on behalf of Poultry Science Association Inc, 2022-09) Abdollahi MR; Wiltafsky-Martin M; Zaefarian F; Ravindran VThe influence of wet-heating (WH) and expansion temperature (ET), and autoclaving time (AT) on the nitrogen-corrected apparent metabolizable energy (AMEn) and standardized ileal digestibility (SID) of AA in full-fat soybeans (FFSB) for broilers was examined in 2 experiments. The AMEn and SID AA of FFSB were determined by the difference and direct methods, respectively. In Experiment 1, raw FFSB (K0) were either treated by WH at 80°C for 1 min and expanded at 115°C (K1-115) or 125°C (K1-125), WH at 100°C for 6 min and expanded at 115°C (K2-115) or 125°C (K2-125), or WH at 100°C for 16 min and expanded at 115°C (K3-115) or 125°C (K3-125). Wet-heating and ET significantly (P < 0.001) increased the AMEn in FFSB. Among heat-treated FFSB, K1-115 and K1-125 resulted in the lowest and highest AMEn values, respectively, with all samples wet-heated at 100°C being intermediate. The K3-125 had AMEn values similar (P > 0.05) to K1-125. Among heat-treated FFSB, the highest average SID AA was recorded for K3-125. In Experiment 2, K3-125 from experiment 1 was divided into 9 batches and autoclaved at 110°C for 15 (Z1), 30 (Z2), 45 (Z3), 60 (Z4), 120 (Z5), 180 (Z6), 240 (Z7), 300 (Z8), and 360 (Z9) min. A quadratic (P < 0.01) pattern was observed for the effects of AT on AMEn. The AMEn was unaffected until 300 min AT and then declined at 360 min. The AT quadratically (P < 0.001) affected the average SID AA where the SID increased from K3-125 to Z1, plateaued to Z5, and then declined to Z9. In conclusion, the results demonstrated that WH at 100°C for 16 min followed by expansion at 125°C as the most optimal wet-heating and expansion processing, associated with the highest SID AA. Autoclaving at 110°C for 30 min enhanced energy utilization and AA digestibility in FFSB, suggesting that further advantages may be achieved by short-time autoclaving of previously wet-heated and expanded FFSB samples.