Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yannone SM"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Novel hyperthermoacidic archaeal enzymes for removal of thermophilic biofilms from stainless steel
    (Oxford University Press on behalf of Applied Microbiology International, 2023-06) Nam Y; Barnebey A; Kim HK; Yannone SM; Flint S
    AIMS: To test the efficacy of novel hot/acid hyperthermoacidic enzyme treatments on the removal of thermophilic spore-forming biofilms from stainless steel surfaces. METHODS AND RESULTS: The present study measured the efficacy of hyperthermoacidic enzymes (protease, amylase, and endoglucanase) that are optimally active at low pH (≈3.0) and high temperatures (≈80°C) at removing thermophilic bacilli biofilms from stainless steel (SS) surfaces. Plate counts, spore counts, impedance microbiology, as well as epifluorescence microscopy, and scanning electron microscopy (SEM) were used to evaluate the cleaning and sanitation of biofilms grown in a continuous flow biofilm reactor. Previously unavailable hyperthermoacidic amylase, protease, and the combination of amylase and protease were tested on Anoxybacillus flavithermus and Bacillus licheniformis, and endoglucanase was tested on Geobacillus stearothermophilus. In all cases, the heated acidic enzymatic treatments significantly reduced biofilm cells and their sheltering extracellular polymeric substances (EPS). CONCLUSIONS: Hyperthermoacidic enzymes and the associated heated acid conditions are effective at removing biofilms of thermophilic bacteria from SS surfaces that contaminate dairy plants.

Copyright © Massey University  |  DSpace software copyright © 2002-2026 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify