Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yeo AG"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Anchoring Mechanism for Capsule Endoscope: Mechanical Design, Fabrication and Experimental Evaluation.
    (MDPI (Basel, Switzerland), 2022-11-22) Rehan M; Yeo AG; Yousuf MU; Avci E; Li Y
    Capsule endoscopes are widely used to diagnose gut-related problems, but they are passive in nature and cannot actively move inside the gut. This paper details the design process and development of an anchoring mechanism and actuation system to hold a capsule in place within the small intestine. The design centres around the mechanical structure of the anchor that makes use of compliant Sarrus linkage legs, which extend to make contact with the intestine, holding the capsule in place. Three variants with 2 legs, 3 legs and 4 legs of the anchoring mechanism were tested using a shape memory alloy spring actuator (5 mm × ϕ 3.4 mm). The experiments determine that all the variants can anchor at the target site and resist peristaltic forces of 346 mN. The proposed design is well suited for an intestine with a diameter of 19 mm. The proposed design allows the capsule endoscopes to anchor at the target site for a better and more thorough examination of the targeted region. The proposed anchoring mechanism has the potential to become a vital apparatus for clinicians to use with capsule endoscopes in the future.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings