Browsing by Author "Zhuang X"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemComprehensive analysis of molecular characteristics between primary and breast-derived metastatic ovarian cancer(AME Publishing Company, 2025-03-30) Long J; Liu B; Li J; Ji X; Zhu N; Zhuang X; Wang H; Li L; Chen Y; Li X; Zhao SBackground: The molecular basis for the disparities between primary ovarian cancer (POC) and ovarian cancer secondary to breast cancer (OCSTBC) remains poorly understood. This study aimed to explore the different characteristics between them through genomic analysis. Methods: We performed differentially expressed genes (DEGs) analysis between POC (n=96) and OCSTBC (n=44) groups with transcriptome data and revealed the enriched biological pathways with Kyoto Encyclopedia of Genes and Genomes (KEGG) and Hallmark gene sets between these two groups. Then, the Microenvironment Cell Populations (MCP)-counter and Cell-type Identification by Estimating Relative Subsets of RNA Transcript (CIBERSORT) algorithms were applied to evaluate the immune infiltration in tumor microenvironment (TME) between them. Finally, we performed the association analysis within single nucleotide polymorphism (SNP) data and obtained some meaningful SNPs and candidate genes for further transcriptomic analysis. Results: We identified a total of 13 cancer-related genes including GATA3, FOXA1, CCND1, and TTK between POC (n=96) and OCSTBC (n=44) groups with DEGs analysis. Integrated analysis revealed more significant immune-enriched pathways in the POC than in the OCSTBC group. Most immune cells had higher infiltration abundance in POC, except M2 macrophages, which was higher in OCSTBC. In SNP analysis, four SNP regions (8q12.1, 11q21, 11q24.3, and 17q25.3) were found to be significantly correlated with phenotypes (POC/OCSTBC), and importantly, some new susceptibility genes such as ETS1, CWC15, and XKR4 were revealed to potentially be associated with distinction between POC and OCSTBC. Conclusions: Our study provides a systematic molecular characteristic between POC and OCSTBC and suggests a pressing need to develop some specific therapeutic strategies in certain types of ovarian cancer.
- ItemIntegrative analysis identifies two molecular and clinical subsets in Luminal B breast cancer(Elsevier Inc, 2023-09-15) Wang H; Liu B; Long J; Yu J; Ji X; Li J; Zhu N; Zhuang X; Li L; Chen Y; Liu Z; Wang S; Zhao SComprehensive multiplatform analysis of Luminal B breast cancer (LBBC) specimens identifies two molecularly distinct, clinically relevant subtypes: Cluster A associated with cell cycle and metabolic signaling and Cluster B with predominant epithelial mesenchymal transition (EMT) and immune response pathways. Whole-exome sequencing identified significantly mutated genes including TP53, PIK3CA, ERBB2, and GATA3 with recurrent somatic mutations. Alterations in DNA methylation or transcriptomic regulation in genes (FN1, ESR1, CCND1, and YAP1) result in tumor microenvironment reprogramming. Integrated analysis revealed enriched biological pathways and unexplored druggable targets (cancer-testis antigens, metabolic enzymes, kinases, and transcription regulators). A systematic comparison between mRNA and protein displayed emerging expression patterns of key therapeutic targets (CD274, YAP1, AKT1, and CDH1). A potential ceRNA network was developed with a significantly different prognosis between the two subtypes. This integrated analysis reveals a complex molecular landscape of LBBC and provides the utility of targets and signaling pathways for precision medicine.