Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zwick A"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Molecular phylogenetics illuminates the evolutionary history and hidden diversity of Australian cave crick ets (Orthoptera: Rhaphidophoridae)
    (John Wiley and Sons Ltd on behalf of Royal Entomological Society., 2025-06-23) Beasley-Hall PG; Trewick SA; Eberhard SM; Zwick A; Reed EH; Cooper SJB; Austin AD; Blaimer B
    Cave crickets (Orthoptera: Rhaphidophoridae) are a globally distributed group of insects found in dark, humid microhabitats including natural caves, alpine scree, and forest litter. Ten extant subfamilies are currently recognised, of which Macropathinae, which comprises the entirety of the fauna in South America, South Africa, Australia, and New Zealand, is thought to be the most ancient. New Zealand comprises high phylogenetic diversity of Rhaphidophoridae throughout its mesic zone, with most species occurring above ground. In contrast, the Australian fauna is poorly known and contains an apparently greater relative proportion of species utilising caves as refugia. A robust phylogenetic framework is needed to underpin future taxonomic work on the group and uncover potentially contrasting patterns of taxonomic diversity. Here, we performed fossil-calibrated phylogenetic analysis using whole mitochondrial genomes and nuclear markers to reconstruct the evolutionary history of Macropathinae with a focus on the Australian fauna. By dramatically increasing taxon sampling relative to past studies, we recovered the Australian fauna as rampantly polyphyletic, with the remaining Macropathinae nested among six distinct Australian lineages. Deep divergences between major clades imply additional Australian lineages remain undetected, either due to extinction or sampling bias, and have likely confounded past biogeographic signal. We inferred the radiation of Macropathinae began during the Lower Cretaceous prior to the fragmentation of Gondwana with a potential Pangaean origin for Rhaphidophoridae. Finally, we found evidence for several undescribed species and genera of Australian Macropathinae, all of which qualify as short-range endemics, and discuss the conservation implications of these restricted distributions.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify