Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Predicting Distance and Direction from Text Locality Descriptions for Biological Specimen Collections
    (Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022-08-22) Liao R; Das PP; Jones CB; Aflaki N; Stock K; Ishikawa T; Fabrikant SI; Winter S
    A considerable proportion of records that describe biological specimens (flora, soil, invertebrates), and especially those that were collected decades ago, are not attached to corresponding geographical coordinates, but rather have their location described only through textual descriptions (e.g. North Canterbury, Selwyn River near bridge on Springston-Leeston Rd). Without geographical coordinates, millions of records stored in museum collections around the world cannot be mapped. We present a method for predicting the distance and direction associated with human language location descriptions which focuses on the interpretation of geospatial prepositions and the way in which they modify the location represented by an associated reference place name (e.g. near the Manawatu River). We study eight distance-oriented prepositions and eight direction-oriented prepositions and use machine learning regression to predict distance or direction, relative to the reference place name, from a collection of training data. The results show that, compared with a simple baseline, our model improved distance predictions by up to 60% and direction predictions by up to 31%.
  • Item
    What Do You Mean You're in Trafalgar Square? Comparing Distance Thresholds for Geospatial Prepositions
    (Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022-09-01) Aflaki N; Stock K; Jones CB; Guesgen H; Morley J; Fukuzawa Y; Ishikawa T; Fabrikant SI; Winter S
    Natural language location descriptions frequently describe object locations relative to other objects (the house near the river). Geospatial prepositions (e.g.near) are a key element of these descriptions, and the distances associated with proximity, adjacency and topological prepositions are thought to depend on the context of a specific scene. When referring to the context, we include consideration of properties of the relatum such as its feature type, size and associated image schema. In this paper, we extract spatial descriptions from the Google search engine for nine prepositions across three locations, compare their acceptance thresholds (the distances at which different prepositions are acceptable), and study variations in different contexts using cumulative graphs and scatter plots. Our results show that adjacency prepositions next to and adjacent to are used for a large range of distances, in contrast to beside; and that topological prepositions in, at and on can all be used to indicate proximity as well as containment and collocation. We also found that reference object image schema influences the selection of geospatial prepositions such as near and in.