Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
2 results
Search Results
Item Mutagenesis treatment of Mortierella alpina for PUFA production enhancement for future food development(Elsevier B.V., 2025-06) Alhattab M; Lebeau J; Singh S; Puri MRandom mutagenesis has been identified as a key tool for improving microbial and fungal strains enabling the development of isolates with improved traits suited for industrial scale metabolite production to enhance the nutritional value of future foods. Presented here, is a random mutagenesis strategy employed to assess the effect of 5-fluorouracil (20-200 µg/ml), alone and in combination with the secondary agents octyl gallate and nocodazole, and diethyl sulfate (0.1 to 1 %) chemical mutagenic agents, on the biomass and lipid production as well as the FAME profile. Interestingly, a correlation was demonstrated between 5-fluorouracil exposure time and the arachidonic acid content, which was also influenced by the concentration used. 5-fluororuracil of 100 µg/ml treatment for 48 h resulted in the highest arachidonic acid (% TFA) content in isolates. Mutant M5F047 isolated with 5-fluororuracil (100 µg/ml) alone, proved to be most superior in terms of polyunsaturated fatty acid (PUFA) and arachidonic acid production, as compared to the Mortierella alpina wild type strain, with enhancements that doubled that of the parent strain. These improvements are more favorable for industrial scale production of arachidonic acid, a precursor of meaty flavour to improve plant-based meats in future food development.Item Oleaginous Microbial Lipids’ Potential in the Prevention and Treatment of Neurological Disorders(MDPI (Basel, Switzerland), 2024-02-06) Alhattab M; Moorthy LS; Patel D; Franco CMM; Puri M; Zhang TThe products of oleaginous microbes, primarily lipids, have gained tremendous attention for their health benefits in food-based applications as supplements. However, this emerging biotechnology also offers a neuroprotective treatment/management potential for various diseases that are seldom discussed. Essential fatty acids, such as DHA, are known to make up the majority of brain phospholipid membranes and are integral to cognitive function, which forms an important defense against Alzheimer’s disease. Omega-3 polyunsaturated fatty acids have also been shown to reduce recurrent epilepsy seizures and have been used in brain cancer therapies. The ratio of omega-3 to omega-6 PUFAs is essential in maintaining physiological function. Furthermore, lipids have also been employed as an effective vehicle to deliver drugs for the treatment of diseases. Lipid nanoparticle technology, used in pharmaceuticals and cosmeceuticals, has recently emerged as a biocompatible, biodegradable, low-toxicity, and high-stability means for drug delivery to address the drawbacks associated with traditional medicine delivery methods. This review aims to highlight the dual benefit that lipids offer in maintaining good health for disease prevention and in the treatment of neurological diseases.
