Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
34 results
Search Results
Item MOA-2022-BLG-033Lb, KMT-2023-BLG-0119Lb, and KMT-2023-BLG-1896Lb: Three low mass-ratio microlensing planets detected through dip signals(The European Southern Observatory (ESO), 2025-02-04) Han C; Bond IA; Jung YK; Albrow MD; Chung S-J; Gould A; Hwang K-H; Lee C-U; Ryu Y-H; Shvartzvald Y; Shin I-G; Yee JC; Yang H; Zang W; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hirao Y; Silva SI; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita KAims. We examined the anomalies in the light curves of the lensing events MOA-2022-BLG-033, KMT-2023-BLG-0119, and KMT- 2023-BLG-1896. These anomalies share similar traits: they occur near the peak of moderately to highly magnified events and display a distinct short-term dip feature. Methods. We conducted detailed modeling of the light curves to uncover the nature of the anomalies. This modeling revealed that all signals originated from planetary companions to the primary lens. The planet-to-host mass ratios are very low: q ∼ 7.5 × 10-5 for MOA-2022-BLG-033, q ∼ 3.6 × 10-4 for KMT-2023-BLG-0119, and q ∼ 6.9 × 10-5 for KMT-2023-BLG-1896. The anomalies occurred as the source passed through the negative deviation region behind the central caustic along the planet-host axis. The solutions are subject to a common inner-outer degeneracy, which results in varying estimations of the projected planet-host separation. For KMT-2023-BLG-1896, although the planetary scenario provides the best explanation for the anomaly, the binary companion scenario is possible. Results. We estimated the physical parameters of the planetary systems through Bayesian analyses based on the lensing observables. While the event timescale was measured for all events, the angular Einstein radius was not measured for any. Additionally, the microlens parallax was measured for MOA-2022-BLG-033. The analysis identifies MOA-2022-BLG-033L as a planetary system with an ice giant with a mass of approximately 12 times that of Earth orbiting an early M dwarf star. The companion of KMT-2023-BLG-1896L is also an ice giant, with a mass of around 16 Earth masses, orbiting a mid-K-type main-sequence star. The companion of KMT-2023-BLG- 0119L, which has a mass around that of Saturn, orbits a mid-K-type dwarf star. The lens for MOA-2022-BLG-033 is highly likely to be located in the disk, whereas for the other events the probabilities of the lens being in the disk or the bulge are roughly equal.Item KMT-2021-BLG-1547Lb: Giant microlensing planet detected through a signal deformed due to source binarity(EDP Sciences, France, 2023-10) Han C; Zang W; Jung YK; Bond IA; Chung S-J; Albrow MD; Gould A; Hwang K-H; Ryu Y-H; Shin I-G; Shvartzvald Y; Yang H; Yee JC; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee C-U; Lee D-J; Lee Y; Park B-G; Pogge RW; Monard B; Qian Q; Liu Z; Maoz D; Penny MT; Zhu W; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hirao Y; Ishitani Silva S; Itow Y; Kirikawa R; Kondo I; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita KAims. We investigate the previous microlensing data collected by the KMTNet survey in search of anomalous events for which no precise interpretations of the anomalies had been suggested. From this investigation, we find that the anomaly in the lensing light curve of the event KMT-2021-BLG-1547 is approximately described by a binary-lens (2L1S) model with a lens possessing a giant planet, but the model leaves unexplained residuals. Methods. We investigated the origin of the residuals by testing more sophisticated models that include either an extra lens component (3L1S model) or an extra source star (2L2S model) on top of the 2L1S configuration of the lens system. From these analyses, we find that the residuals from the 2L1S model originate from the existence of a faint companion to the source. The 2L2S solution substantially reduces the residuals and improves the model fit by δ x 2 = 67.1 with respect to the 2L1S solution. The 3L1S solution also improves the fit, but its fit is worse than that of the 2L2S solution by δ x 2 = 24.7. Results. According to the 2L2S solution, the lens of the event is a planetary system with planet and host masses (Mp/MJ, Mh/M·) = (1.47-0.77+0.64, 0.72-0.38+0.32) lying at a distance DL = 5.07-1.50+0.98 kpc, and the source is a binary composed of a subgiant primary of a late G or an early K spectral type and a main-sequence companion of a K spectral type. The event demonstrates the need for sophisticated modeling of unexplained anomalies if one wants to construct a complete microlensing planet sample.Item KMT-2021-BLG-1150Lb: Microlensing planet detected through a densely covered planetary-caustic signal(EDP Sciences, France, 2023-07) Han CH; Jung YK; Bond IA; Gould A; Chung S-J; Albrow MD; Hwang K-H; Ryu Y-H; Shin I-G; Shvartzvald Y; Yang H; Yee JC; Zang W; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee C-U; Lee D-J; Lee Y; Park B-G; Pogge RW; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hirao Y; Ishitani Silva S; Itow Y; Kirikawa R; Kondo I; Koshimoto N; Matsubara Y; Matsumoto S; Miyazaki S; Muraki Y; Okamura A; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Toda T; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita KAims. Recently, there have been reports of various types of degeneracies in the interpretation of planetary signals induced by planetary caustics. In this work we check whether such degeneracies persist in the case of well-covered signals by analyzing the lensing event KMT-2021-BLG-1150, the light curve of which exhibits a densely and continuously covered short-term anomaly. Methods. In order to identify degenerate solutions, we thoroughly investigated the parameter space by conducting dense grid searches for the lensing parameters. We then checked the severity of the degeneracy among the identified solutions. Results. We identify a pair of planetary solutions resulting from the well-known inner-outer degeneracy, and find that interpreting the anomaly is not subject to any degeneracy other than the inner-outer degeneracy. The measured parameters of the planet separation (normalized to the Einstein radius) and mass ratio between the lens components are (s, q)in ∼ (1.297, 1.10 - 10-3) for the inner solution and (s, q)out ∼ (1.242, 1.15 - 10-3) for the outer solution. According to a Bayesian estimation, the lens is a planetary system consisting of a planet with a mass Mp = 0.88-0.36+0.38 Mj and its host with a mass Mh = 0.73-0.30+0.32 M· lying toward the Galactic center at a distance DL = 3.8-1.2+1.3 kpc. By conducting analyses using mock data sets prepared to mimic those obtained with data gaps and under various observational cadences, we find that gaps in data can result in various degenerate solutions, while the observational cadence does not pose a serious degeneracy problem as long as the anomaly feature can be delineated.Item MOA-2022-BLG-249Lb: Nearby microlensing super-Earth planet detected from high-cadence surveys(EDP Sciences for The European Southern Observatory, 2023-06) Han C; Gould A; Jung YK; Bond IA; Zang W; Chung S-J; Albrow MD; Hwang K-H; Ryu Y-H; Shin I-G; Shvartzvald Y; Yang H; Yee JC; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee C-U; Lee D-J; Lee Y; Park B-G; Pogge RW; Mao S; Zhu W; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hirao Y; Ishitani Silva S; Itow Y; Kirikawa R; Kondo I; Koshimoto N; Matsubara Y; Matsumoto S; Miyazaki S; Muraki Y; Okamura A; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Toda T; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita KAims. We investigate the data collected by the high-cadence microlensing surveys during the 2022 season in search of planetary signals appearing in the light curves of microlensing events. From this search, we find that the lensing event MOA-2022-BLG-249 exhibits a brief positive anomaly that lasted for about one day, with a maximum deviatio Methods. We analyzed the light curve under the two interpretations of the anomaly: one originated by a low-mass companion to the lens (planetary model) and the other originated by a faint companion to the source (binary-source model). Results. We find that the anomaly is better explained by the planetary model than the binary-source model. We identified two solutions rooted in the inner-outer degeneracy and for both of them, the estimated planet-To-host mass ratio, q ~ 8 A-10' 5, is very small. With the constraints provided by the microlens parallax and the lower limit on the Einstein radius, as well as the blend-flux constraint, we find that the lens is a planetary system, in which a super-Earth planet, with a mass of (4.83 ± 1.44) M·, orbits a low-mass host star, with a mass of (0.18 ± 0.05) M·, lying in the Galactic disk at a distance of (2.00 ± 0.42) kpc. The planet detection demonstrates the elevated microlensing sensitivity of the current high-cadence lensing surveys to low-mass planets.Item Kepler K2 Campaign 9 – II. First space-based discovery of an exoplanet using microlensing(Oxford University Press, 2023-04-01) Specht D; Poleski R; Penny MT; Kerins E; McDonald I; Chung-Uk L; Udalski A; Bond IA; Shvartzvald Y; Zang W; Street RA; Hogg DW; Gaudi BS; Barclay T; Barentsen G; Howell SB; Mullally F; Henderson CB; Bryson ST; Caldwell DA; Haas MR; Van Cleve JE; Larson K; McCalmont K; Peterson C; Putnam D; Ross S; Packard M; Reedy L; Albrow MD; Sun-Ju C; Jung YK; Gould A; Han C; Kyu-Ha H; Yoon-Hyun R; In-Gu S; Yang H; Yee JC; Sang-Mok C; Dong-Jin K; Seung-Lee K; Dong-Joo L; Lee Y; Byeong-Gon P; Pogge RW; Szymański MK; Soszyński I; Ulaczyk K; Pietrukowicz P; Kozłowski SZ; Skowron J; Mróz P; Mao S; Fouqué P; Zhu W; Abe F; Barry R; Bennett DP; Bhattacharya A; Fukui A; Fujii H; Hirao Y; Itow Y; Kirikawa R; Kondo I; Koshimoto N; Matsubara Y; Matsumoto S; Miyazaki S; Muraki Y; Olmschenk G; Ranc C; Okamura A; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Silva SI; Toda T; Tristram PJ; Vandorou A; Yama H; Beichman C; Bryden G; Novati SCWe present K2-2016-BLG-0005Lb, a densely sampled, planetary binary caustic-crossing microlensing event found from a blind search of data gathered from Campaign 9 of the Kepler K2 mission (K2C9). K2-2016-BLG-0005Lb is the first bound microlensing exoplanet discovered from space-based data. The event has caustic entry and exit points that are resolved in the K2C9 data, enabling the lens-source relative proper motion to be measured. We have fitted a binary microlens model to the Kepler data and to simultaneous observations from multiple ground-based surveys. Whilst the ground-based data only sparsely sample the binary caustic, they provide a clear detection of parallax that allows us to break completely the microlensing mass-position-velocity degeneracy and measure the planet’s mass directly. We find a host mass of 0.58 ± 0.04 M and a planetary mass of 1.1 ± 0.1 MJ. The system lies at a distance of 5.2 ± 0.2 kpc from Earth towards the Galactic bulge, more than twice the distance of the previous most distant planet found by Kepler. The sky-projected separation of the planet from its host is found to be 4.2 ± 0.3 au which, for circular orbits, deprojects to a host separation a = 4.4+−0149 au and orbital period P = 13+−29 yr. This makes K2-2016-BLG-0005Lb a close Jupiter analogue orbiting a low-mass host star. According to current planet formation models, this system is very close to the host mass threshold below which Jupiters are not expected to form. Upcoming space-based exoplanet microlensing surveys by NASA’s Nancy Grace Roman Space Telescope and, possibly, ESA’s Euclid mission, will provide demanding tests of current planet formation models.Item Microlensing brown-dwarf companions in binaries detected during the 2022 and 2023 seasons(EDP Sciences for The European Southern Observatory, 2024-11) Han C; Bond IA; Udalski A; Lee C-U; Gould A; Albrow MD; Chung S-J; Hwang K-H; Jung YK; Ryu Y-H; Shvartzvald Y; Shin I-G; Yee JC; Yang H; Zang W; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Abe F; Bando K; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hamada S; Hamasaki N; Hirao Y; Ishitani Silva S; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita K; Mróz P; Szymański MK; Skowron J; Poleski R; Soszyński I; Pietrukowicz P; Kozlowski S; Rybicki KA; Iwanek P; Ulaczyk K; Wrona M; Gromadzki M; Mróz MJAims. Building on previous works to construct a homogeneous sample of brown dwarfs in binary systems, we investigate microlensing events detected by the Korea Microlensing Telescope Network (KMTNet) survey during the 2022 and 2023 seasons. Methods. Given the difficulty in distinguishing brown-dwarf events from those produced by binary lenses with nearly equal-mass components, we analyze all lensing events detected during the seasons that exhibit anomalies characteristic of binary-lens systems. Results. Using the same criteria consistently applied in previous studies, we identify six additional brown dwarf candidates through the analysis of lensing events KMT-2022-BLG-0412, KMT-2022-BLG-2286, KMT-2023-BLG-0201, KMT-2023-BLG-0601, KMT-2023-BLG-1684, and KMT-2023-BLG-1743. An examination of the mass posteriors shows that the median mass of the lens companions ranges from 0.02 M⊙ to 0.05 M⊙, indicating that these companions fall within the brown-dwarf mass range. The mass of the primary lenses ranges from 0.11 M⊙ to 0.68 M⊙, indicating that they are low-mass stars with substantially lower masses compared to the Sun.Item KMT-2023-BLG-1866Lb: Microlensing super-Earth around an M dwarf host(EDP Sciences for The European Southern Observatory, 2024-07) Han C; Bond IA; Udalski A; Lee C-U; Gould A; Albrow MD; Chung S-J; Hwang K-H; Jung YK; Ryu Y-H; Shvartzvald Y; Shin I-G; Yee JC; Yang H; Zang W; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Abe F; Bando K; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hamada S; Hamasaki N; Hirao Y; Ishitani Silva S; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita K; Mróz P; Szymański MK; Skowron J; Poleski RA; Soszyński I; Pietrukowicz P; Kozłowski S; Rybicki KA; Iwanek P; Ulaczyk K; Wrona M; Gromadzki M; Mróz MJAims. We aim to investigate the nature of the short-term anomaly that appears in the lensing light curve of KMT-2023-BLG-1866. The anomaly was only partly covered due to its short duration of less than a day, coupled with cloudy weather conditions and a restricted nighttime duration. Methods. Considering the intricacy of interpreting partially covered signals, we thoroughly explored all potential degenerate solutions. Through this process, we identified three planetary scenarios that account for the observed anomaly equally well. These scenarios are characterized by the specific planetary parameters: (s, q)inner = [0.9740 ± 0.0083, (2.46 ± 1.07) × 10-5], (s, q)intermediate = [0.9779 ± 0.0017, (1.56 ± 0.25) × 10-5], and (s, q)outer = [0.9894 ± 0.0107, (2.31 ± 1.29) × 10-5], where s and q denote the projected separation (scaled to the Einstein radius) and mass ratio between the planet and its host, respectively. We identify that the ambiguity between the inner and outer solutions stems from the inner-outer degeneracy, while the similarity between the intermediate solution and the others is due to an accidental degeneracy caused by incomplete anomaly coverage. Results. Through Bayesian analysis utilizing the constraints derived from measured lensing observables and blending flux, our estimation indicates that the lens system comprises a very-low-mass planet orbiting an early M-type star situated approximately (6.2-6.5) kpc from Earth in terms of median posterior values for the different solutions. The median mass of the planet host is in the range of (0.48-0.51) M⊙, and that of the planet's mass spans a range of (2.6-4.0) ME, varying across different solutions. The detection of KMT-2023-BLG-1866Lb signifies the extension of the lensing surveys to very-low-mass planets that have been difficult to detect in earlier surveys.Item KMT-2021-BLG-0284, KMT-2022-BLG-2480, and KMT-2024-BLG-0412: Three microlensing events involving two lens masses and two source stars(EDP Sciences for The European Southern Observatory, 2024-12) Han C; Udalski A; Bond IA; Lee C-U; Gould A; Albrow MD; Chung S-J; Hwang K-H; Jung YK; Ryu Y-H; Shvartzvald Y; Shin I-G; Yee JC; Yang H; Zang W; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Mróz P; Szymanski MK; Skowron J; Poleski R; Soszynski I; Pietrukowicz P; Kozłowski S; Rybicki KA; Iwanek P; Ulaczyk K; Wrona M; Gromadzki M; Mróz MJ; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hirao Y; Ishitani Silva S; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita KAims. We carried out a project involving the systematic analysis of microlensing data from the Korea Microlensing Telescope Network survey. The aim of this project is to identify lensing events with complex anomaly features that are difficult to explain using standard binary-lens or binary-source models. Methods. Our investigation reveals that the light curves of microlensing events KMT-2021-BLG-0284, KMT-2022-BLG-2480, and KMT-2024BLG-0412 display highly complex patterns with three or more anomaly features. These features cannot be adequately explained by a binary-lens (2L1S) model alone. However, the 2L1S model can effectively describe certain segments of the light curve. By incorporating an additional source into the modeling, we identified a comprehensive model that accounts for all the observed anomaly features. Results. Bayesian analysis, based on constraints provided by lensing observables, indicates that the lenses of KMT-2021-BLG-0284 and KMT-2024-BLG-0412 are binary systems composed of M dwarfs. For KMT-2022-BLG-2480, the primary lens is an early K-type main-sequence star with an M dwarf companion. The lenses of KMT-2021-BLG-0284 and KMT-2024-BLG-0412 are likely located in the bulge, whereas the lens of KMT-2022-BLG-2480 is more likely situated in the disk. In all events, the binary stars of the sources have similar magnitudes due to a detection bias favoring binary source events with a relatively bright secondary source star, which increases detection efficiency.Item Dark lens candidates from Gaia Data Release 3(EDP Sciences, France, for The European Southern Observatory, 2024-12) Kruszyńska K; Wyrzykowski L; Rybicki KA; Howil K; Jablońska M; Kaczmarek Z; Ihanec N; Maskoliūnas M; Bronikowski M; Pylypenko U; Udalski A; Mróz P; Poleski R; Skowron J; Szymański MK; Soszyński I; Pietrukowicz P; Kozlowski S; Ulaczyk K; Iwanek P; Wrona M; Gromadzki M; Mróz MJ; Abe F; Bando K; Barry R; Bennett DP; Bhattacharya A; Bond IA; Fukui A; Hamada R; Hamada S; Hamasaki N; Hirao Y; Ishitani Silva S; Itow Y; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tristram PJ; Vandorou A; Yama HGravitational microlensing is a phenomenon that allows us to observe the dark remnants of stellar evolution, even if these bodies are no longer emitting electromagnetic radiation. In particular, it can be useful to observe solitary neutron stars or stellar-mass black holes, providing a unique window through which to understand stellar evolution. Obtaining direct mass measurements with this technique requires precise observations of both the change in brightness and the position of the microlensed star. The European Space Agency's Gaia satellite can provide both. Using publicly available data from different surveys, we analysed events published in the Gaia Data Release 3 (Gaia DR3) microlensing catalogue. Here, we describe our selection of candidate dark lenses, where we suspect the lens is a white dwarf (WD), a neutron star (NS), a black hole (BH), or a mass-gap object, with a mass in the range between the heaviest NS and the least massive BH. We estimated the mass of the lenses using information obtained from the best-fitting microlensing models, source star, Galactic model, and the expected parameter distributions. We found eleven candidates for dark remnants: one WDs, three NSs, three mass-gap objects, and four BHs.Item Analysis of the Full Spitzer Microlensing Sample. I. Dark Remnant Candidates and Gaia Predictions(American Astronomical Society, 2024-11-10) Rybicki KA; Shvartzvald Y; Yee JC; Novati SC; Ofek EO; Bond IA; Beichman C; Bryden G; Carey S; Henderson C; Zhu W; Fausnaugh MM; Wibking B; Udalski A; Poleski R; Mróz P; Szymański MK; Soszyński I; Pietrukowicz P; Kozłowski S; Skowron J; Ulaczyk K; Iwanek P; Wrona M; Ryu Y-H; Albrow MD; Chung S-J; Gould A; Han C-H; Hwang K-H; Jung YK; Shin I-G; Yang H; Zang W; Cha S-M; Kim D-J; Kim H-W; Kim S-L; Lee C-U; Lee D-J; Lee Y; Park B-G; Pogge RW; Abe F; Barry R; Bennett DP; Bhattacharya A; Fukui A; Hamada R; Hamada S; Hamasaki N; Hirao Y; Ishitani Silva S; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh YK; Sumi T; Suzuki D; Tristram PJ; Vandorou A; Yama H; Wyrzykowski Ł; Howil K; Kruszyńska KIn the pursuit of understanding the population of stellar remnants within the Milky Way, we analyze the sample of ∼950 microlensing events observed by the Spitzer Space Telescope between 2014 and 2019. In this study we focus on a subsample of nine microlensing events, selected based on their long timescales, small microlensing parallaxes, and joint observations by the Gaia mission, to increase the probability that the chosen lenses are massive and the mass is measurable. Among the selected events we identify lensing black holes and neutron star candidates, with potential confirmation through forthcoming release of the Gaia time-series astrometry in 2026. Utilizing Bayesian analysis and Galactic models, along with the Gaia Data Release 3 proper-motion data, four good candidates for dark remnants were identified: OGLE-2016-BLG-0293, OGLE-2018-BLG-0483, OGLE-2018-BLG-0662, and OGLE-2015-BLG-0149, with lens masses of 3.0-1.3+1.8M☉, 4.7-2.1+3.2 M☉, 3.15-0.64+0..66 M☉ and 1.40-0.55+0.75 M☉, respectively. Notably, the first two candidates are expected to exhibit astrometric microlensing signals detectable by Gaia, offering the prospect of validating the lens masses. The methodologies developed in this work will be applied to the full Spitzer microlensing sample, populating and analyzing the timescale (tE) versus parallax (πE) diagram to derive constraints on the population of lenses in general and massive remnants in particular.
