Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
2 results
Search Results
Item Assessing antimicrobial resistance in pasture-based dairy farms: a 15-month surveillance study in New Zealand.(American Society for Microbiology, 2024-10-23) Collis RM; Biggs PJ; Burgess SA; Midwinter AC; Liu J; Brightwell G; Cookson ALAntimicrobial resistance is a global public and animal health concern. Antimicrobial resistance genes (ARGs) have been detected in dairy farm environments globally; however, few longitudinal studies have utilized shotgun metagenomics for ARG surveillance in pasture-based systems. This 15-month study aimed to undertake a baseline survey using shotgun metagenomics to assess the relative abundance and diversity of ARGs in two pasture-based dairy farm environments in New Zealand with different management practices. There was no statistically significant difference in overall ARG relative abundance between the two dairy farms (P = 0.321) during the study period. Compared with overseas data, the relative abundance of ARG copies per 16S rRNA gene in feces (0.08-0.17), effluent (0.03-0.37), soil (0.20-0.63), and bulk tank milk (0.0-0.12) samples was low. Models comparing the presence or absence of resistance classes found in >10% of all feces, effluent, and soil samples demonstrated no statistically significant associations (P > 0.05) with "season," and only multi-metal (P = 0.020) and tetracycline (P = 0.0003) resistance were significant at the "farm" level. Effluent samples harbored the most diverse ARGs, some with a recognized public health risk, whereas soil samples had the highest ARG relative abundance but without recognized health risks. This highlights the importance of considering the genomic context and risk of ARGs in metagenomic data sets. This study suggests that antimicrobial resistance on pasture-based dairy farms is low and provides essential baseline ARG surveillance data for such farming systems. IMPORTANCE: Antimicrobial resistance is a global threat to human and animal health. Despite the detection of antimicrobial resistance genes (ARGs) in dairy farm environments globally, longitudinal surveillance in pasture-based systems remains limited. This study assessed the relative abundance and diversity of ARGs in two New Zealand dairy farms with different management practices and provided important baseline ARG surveillance data on pasture-based dairy farms. The overall ARG relative abundance on these two farms was low, which provides further evidence for consumers of the safety of New Zealand's export products. Effluent samples harbored the most diverse range of ARGs, some of which were classified with a recognized risk to public health, whereas soil samples had the highest ARG relative abundance; however, the soil ARGs were not classified with a recognized public health risk. This emphasizes the need to consider genomic context and risk as well as ARG relative abundance in resistome studies.Item Prevalence and distribution of extended-spectrum β-lactamase and AmpC-producing Escherichia coli in two New Zealand dairy farm environments.(2022) Collis RM; Biggs PJ; Burgess SA; Midwinter AC; Brightwell G; Cookson ALAntimicrobial resistance (AMR) is a global threat to human and animal health, with the misuse and overuse of antimicrobials being suggested as the main driver of resistance. In a global context, New Zealand (NZ) is a relatively low user of antimicrobials in animal production. However, the role antimicrobial usage on pasture-based dairy farms, such as those in NZ, plays in driving the spread of AMR within the dairy farm environment remains equivocal. Culture-based methods were used to determine the prevalence and distribution of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Escherichia coli from farm environmental samples collected over a 15-month period from two NZ dairy farms with contrasting management practices. Whole genome sequencing was utilised to understand the genomic epidemiology and antimicrobial resistance gene repertoire of a subset of third-generation cephalosporin resistant E. coli isolated in this study. There was a low sample level prevalence of ESBL-producing E. coli (faeces 1.7%; farm dairy effluent, 6.7% from Dairy 4 and none from Dairy 1) but AmpC-producing E. coli were more frequently isolated across both farms (faeces 3.3% and 8.3%; farm dairy effluent 38.4%, 6.7% from Dairy 1 and Dairy 4, respectively). ESBL- and AmpC-producing E. coli were isolated from faeces and farm dairy effluent in spring and summer, during months with varying levels of antimicrobial use, but no ESBL- or AmpC-producing E. coli were isolated from bulk tank milk or soil from recently grazed paddocks. Hybrid assemblies using short- and long-read sequence data from a subset of ESBL- and AmpC-producing E. coli enabled the assembly and annotation of nine plasmids from six E. coli, including one plasmid co-harbouring 12 antimicrobial resistance genes. ESBL-producing E. coli were infrequently identified from faeces and farm dairy effluent on the two NZ dairy farms, suggesting they are present at a low prevalence on these farms. Plasmids harbouring several antimicrobial resistance genes were identified, and bacteria carrying such plasmids are a concern for both animal and public health. AMR is a burden for human, animal and environmental health and requires a holistic "One Health" approach to address.
