Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Genetic and phenotypic relationships between ewe reproductive performance and wool and growth traits in Uruguayan Ultrafine Merino sheep.
    (Oxford University Press on behalf of the American Society of Animal Science, 2023-03-07) Ramos Z; Garrick DJ; Blair HT; De Barbieri I; Ciappesoni G; Montossi F; Kenyon PR
    This study reports genetic parameters for yearling and adult wool and growth traits, and ewe reproductive performance. Data were sourced from an Uruguayan Merino flock involved in a long-term selection program focused on reduced fiber diameter (FD), and increased clean fleece weight (CFW) and live weight (LW). Pedigree and performance data from approximately 5,700 mixed-sex yearling lambs and 2,000 mixed-age ewes born between 1999 and 2019 were analyzed. The number of records ranged from 1,267 to 5,738 for yearling traits, and from 1,931 to 7,079 for ewe productive and reproductive performance. Data on yearling and adult wool traits, LW and body condition score (BCS), yearling eye muscle area (Y_EMA), and fat thickness (Y_FAT), and several reproduction traits were analyzed. The genetic relationships between FD and reproduction traits were not different from zero. Moderate unfavorable genetic correlations were found between adult CFW and ewe lifetime reproduction traits (-0.34 ± 0.08 and -0.33 ± 0.09 for the total number of lambs weaned and total lamb LW at weaning, respectively). There were moderate to strong positive genetic correlations between yearling LW and all reproduction traits other than ewe-rearing ability (-0.08 ± 0.11) and pregnancy rate (0.18 ± 0.08). The genetic correlations between Y_EMA and reproduction traits were positive and ranged from 0.15 to 0.49. Moderate unfavorable genetic correlations were observed between yearling FD and Y_FAT and between adult FD and BCS at mating (0.31 ± 0.12 and 0.23 ± 0.07, respectively). The genetic correlations between adult fleece weight and ewe BCS at different stages of the cycle were negative, but generally not different from zero. This study shows that selection for reduced FD is unlikely to have any effect on reproduction traits. Selection for increased yearling LW and Y_EMA will improve ewe reproductive performance. On the other hand, selection for increased adult CFW will reduce ewe reproductive performance, whereas selection for reduced FD will negatively impact body fat levels. Although unfavorable genetic relationships between wool traits and both FAT and ewe reproductive performance existed, simultaneous improvements in the traits would occur using appropriately designed indexes.
  • Item
    Genetic Parameters for Growth, Ultrasound and Carcass Traits in New Zealand Beef Cattle and Their Correlations with Maternal Performance
    (MDPI, (Basel, Switzerland), 2021-12-23) Weik F; Hickson RE; Morris ST; Garrick DJ; Archer JA
    Research has shown that enhancing finishing performance in beef cows is feasible; however, any adverse impact of selection strategies for finishing performance on the performance of the maternal herd should be taken into account. The aim of this research was to examine the inheritance of growth, ultrasound and carcass traits in finishing beef cattle and to evaluate their correlations with maternal performance traits. Data were collected from a nationwide progeny test on commercial New Zealand hill country farms comprising a total of 4473 beef cows and their progeny. Most finishing traits were moderately to highly heritable (0.28-0.58) with the exception of meat or fat colour and ossification (0.00-0.12). Ultrasound scan traits had high genetic correlations with corresponding traits measured at slaughter (rg = 0.53-0.95) and may be used as a selection tool for improved genetic merit of the beef carcass. Fat content determined via ultrasound scanning in the live animal or at slaughter in finishing cattle is positively genetically correlated with rebreeding performance (rg = 0.22-0.39) in female herd replacements and negatively correlated with mature cow live weight (rg = -0.40 to -0.19). Low-magnitude associations were observed between the genetic merit for carcass fat traits with body condition in mature cows.