Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
2 results
Search Results
Item Body mass and hibernation microclimate may predict bat susceptibility to white-nose syndrome(John Wiley and Sons, Ltd, 7/01/2021) Haase CG; Fuller NW; Dzal YA; Hranac CR; Hayman DTS; Lausen CL; Silas KA; Olson SH; Plowright RKIn multihost disease systems, differences in mortality between species may reflect variation in host physiology, morphology, and behavior. In systems where the pathogen can persist in the environment, microclimate conditions, and the adaptation of the host to these conditions, may also impact mortality. White-nose syndrome (WNS) is an emerging disease of hibernating bats caused by an environmentally persistent fungus, Pseudogymnoascus destructans. We assessed the effects of body mass, torpid metabolic rate, evaporative water loss, and hibernaculum temperature and water vapor deficit on predicted overwinter survival of bats infected by P. destructans. We used a hibernation energetics model in an individual-based model framework to predict the probability of survival of nine bat species at eight sampling sites across North America. The model predicts time until fat exhaustion as a function of species-specific host characteristics, hibernaculum microclimate, and fungal growth. We fit a linear model to determine relationships with each variable and predicted survival and semipartial correlation coefficients to determine the major drivers in variation in bat survival. We found host body mass and hibernaculum water vapor deficit explained over half of the variation in survival with WNS across species. As previous work on the interplay between host and pathogen physiology and the environment has focused on species with narrow microclimate preferences, our view on this relationship is limited. Our results highlight some key predictors of interspecific survival among western bat species and provide a framework to assess impacts of WNS as the fungus continues to spread into western North America.Item Evolutionary history of rat-borne Bartonella: the importance of commensal rats in the dissemination of bacterial infections globally(John Wiley & Sons, 2013) Hayman DTS; McDonald KD; Kosoy MYEmerging pathogens that originate from invasive species have caused numerous significant epidemics. Some bacteria of genus Bartonella are rodent-borne pathogens that can cause disease in humans and animals alike. We analyzed gltA sequences of 191 strains of rat-associated bartonellae from 29 rodent species from 17 countries to test the hypotheses that this bacterial complex evolved and diversified in Southeast Asia before being disseminated by commensal rats Rattus rattus (black rat) and Rattus norvegicus (Norway rat) to other parts of the globe. The analysis suggests that there have been numerous dispersal events within Asia and introductions from Asia to other regions, with six major clades containing Southeast Asian isolates that appear to have been dispersed globally. Phylogeographic analyses support the hypotheses that these bacteria originated in Southeast Asia and commensal rodents (R. rattus and R. norvegicus) play key roles in the evolution and dissemination of this Bartonella complex throughout the world.
