Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
2 results
Search Results
Item Addressing the challenges of implementing evidence-based prioritisation in global health.(BMJ Publishing Group Ltd, 2023-08-02) Hayman DTS; Barraclough RK; Muglia LJ; McGovern V; Afolabi MO; N'Jai AU; Ambe JR; Atim C; McClelland A; Paterson B; Ijaz K; Lasley J; Ahsan Q; Garfield R; Chittenden K; Phelan AL; Lopez Rivera A; Abimbola SGlobal health requires evidence-based approaches to improve health and decrease inequalities. In a roundtable discussion between health practitioners, funders, academics and policy-makers, we recognised key areas for improvement to deliver better-informed, sustainable and equitable global health practices. These focus on considering information-sharing mechanisms and developing evidence-based frameworks that take an adaptive function-based approach, grounded in the ability to perform and respond to prioritised needs. Increasing social engagement as well as sector and participant diversity in whole-of-society decision-making, and collaborating with and optimising on hyperlocal and global regional entities, will improve prioritisation of global health capabilities. Since the skills required to navigate drivers of pandemics, and the challenges in prioritising, capacity building and response do not sit squarely in the health sector, it is essential to integrate expertise from a broad range of fields to maximise on available knowledge during decision-making and system development. Here, we review the current assessment tools and provide seven discussion points for how improvements to implementation of evidence-based prioritisation can improve global health.Item Absence of Cryptosporidium hominis and dominance of zoonotic Cryptosporidium species in patients after Covid-19 restrictions in Auckland, New Zealand(Cambridge University Press, 2021-09) Knox MA; Garcia-R JC; Ogbuigwe P; Pita A; Velathanthiri N; Hayman DTSCoronavirus disease-2019 (Covid-19) nonpharmaceutical interventions have proven effective control measures for a range of respiratory illnesses throughout the world. These measures, which include isolation, stringent border controls, physical distancing and improved hygiene also have effects on other human pathogens, including parasitic enteric diseases such as cryptosporidiosis. Cryptosporidium infections in humans are almost entirely caused by two species: C. hominis, which is primarily transmitted from human to human, and Cryptosporidium parvum, which is mainly zoonotic. By monitoring Cryptosporidium species and subtype families in human cases of cryptosporidiosis before and after the introduction of Covid-19 control measures in New Zealand, we found C. hominis was completely absent after the first months of 2020 and has remained so until the beginning of 2021. Nevertheless, C. parvum has followed its typical transmission pattern and continues to be widely reported. We conclude that ~7 weeks of isolation during level 3 and 4 lockdown period interrupted the human to human transmission of C. hominis leaving only the primarily zoonotic transmission pathway used by C. parvum. Secondary anthroponotic transmission of C. parvum remains possible among close contacts of zoonotic cases. Ongoing 14-day quarantine measures for new arrivals to New Zealand have likely suppressed new incursions of C. hominis from overseas. Our findings suggest that C. hominis may be controlled or even eradicated through nonpharmaceutical interventions.
