Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 7 of 7
  • Item
    Vitamin D and Autism Spectrum Disorder: A Literature Review.
    (21/04/2016) Mazahery H; Camargo CA; Conlon C; Beck KL; Kruger MC; von Hurst PR
    Low vitamin D status in early development has been hypothesised as an environmental risk factor for Autism Spectrum Disorder (ASD), given the concurrent increase in the prevalence of these two conditions, and the association of vitamin D with many ASD-associated medical conditions. Identification of vitamin D-ASD factors may provide indications for primary and secondary prevention interventions. We systematically reviewed the literature for studies on vitamin D-ASD relationship, including potential mechanistic pathways. We identified seven specific areas, including: latitude, season of conception/birth, maternal migration/ethnicity, vitamin D status of mothers and ASD patients, and vitamin D intervention to prevent and treat ASD. Due to differences in the methodological procedures and inconsistent results, drawing conclusions from the first three areas is difficult. Using a more direct measure of vitamin D status--that is, serum 25(OH)D level during pregnancy or childhood--we found growing evidence for a relationship between vitamin D and ASD. These findings are supported by convincing evidence from experimental studies investigating the mechanistic pathways. However, with few primary and secondary prevention intervention trials, this relationship cannot be determined, unless randomised placebo-controlled trials of vitamin D as a preventive or disease-modifying measure in ASD patients are available.
  • Item
    The Relationship between Nutrient Patterns and Bone Mineral Density in Postmenopausal Women
    (MDPI (Basel, Switzerland), 3/06/2019) Ilesanmi-Oyelere BL; Brough L; Coad J; Roy N; Kruger MC
    In women, the menopausal transition is characterized by acid-base imbalance, estrogen deficiency and rapid bone loss. Research into nutritional factors that influence bone health is therefore necessary. In this study, the relationship between nutrient patterns and nutrients important for bone health with bone mineral density (BMD) was explored. In this cross-sectional analysis, 101 participants aged between 54 and 81 years were eligible. Body composition and BMD analyses were performed using dual-energy X-ray absorptiometry (DXA). Nutrient data were extracted from a 3-day diet diary (3-DDD) using Foodworks 9 and metabolic equivalent (MET-minutes) was calculated from a self-reported New Zealand physical activity questionnaire (NZPAQ). Significant positive correlations were found between intakes of calcium (p = 0.003, r = 0.294), protein (p = 0.013, r = 0.246), riboflavin (p = 0.020, r = 0.232), niacin equivalent (p = 0.010, r = 0.256) and spine BMD. A nutrient pattern high in riboflavin, phosphorus and calcium was significantly positively correlated with spine (p < 0.05, r = 0.197) and femoral neck BMD (p < 0.05, r = 0.213), while the nutrient pattern high in vitamin E, α-tocopherol, β-carotene and omega 6 fatty acids was negatively correlated with hip (p < 0.05, r = -0.215) and trochanter BMD (p < 0.05, r = -0.251). These findings support the hypothesis that a nutrient pattern high in the intake of vitamin E, α-tocopherol and omega 6 fatty acids appears to be detrimental for bone health in postmenopausal women.
  • Item
    Effects of omega 3 and omega 6-polyunsaturated fatty acids on RANKL-induced osteoclast differentiation of RAW264.7 cells: A comparative in vitro study
    (MDPI, 10/07/2014) Boeyens JCA; Deepak V; Chua W-H; Kruger MC; Joubert A; Coetzee M
    Polyunsaturated fatty acids (PUFAs) have been reported to have an anabolic effect on bone in vivo, but comparative studies to identify inhibitors of osteoclast formation amongst ω3- and ω6-PUFAs are still lacking. Here we assessed the effects of the ω3-PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and the ω6-PUFAs, arachidonic acid (AA) and γ-linolenic acid (GLA) on a RAW264.7 osteoclast differentiation model. The effects of PUFAs on RANKL-induced osteoclast formation were evaluated by counting tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells. PUFAs significantly inhibited RANKL-induced osteoclast formation in a dose-dependent manner with AA- and DHA-mediated inhibition being the strongest. Furthermore, RANKL-induced mRNA- and protein expression of the key osteoclastogenic genes cathepsin K and TRAP were inhibited by AA and more potently by DHA. Owing to the attenuated osteoclastogenesis by DHA and AA, actin ring formation and bone resorptive activity of these cells as evaluated on bone-mimetic plates were severely compromised. Hence, of the tested PUFAs, AA and DHA were found to be the most effective in inhibiting RANKL-induced osteoclast formation with the latter providing the strongest inhibitory effects. Collectively, the data indicates that these PUFAs may play an important role in regulating bone diseases characterized by excessive osteoclast activity.
  • Item
    Postprandial metabolic responses of serum calcium, parathyroid hormone and C-telopeptide of type I collagen to three doses of calcium delivered in milk.
    (SPRINGER LONDON LTD, 2014) Kruger MC; von Hurst PR; Booth CL; Kuhn-Sherlock B; Todd JM; Schollum LM
    Acute doses of Ca rapidly increase serum Ca and reduce bone resorption concomitant with a reduction in serum parathyroid hormone (PTH) levels. The physiological response to a dose of Ca in milk and to a Ca salt may be different. The present study investigated Ca absorption patterns with increasing levels of fortification in milk, and the response to one dose of a Ca salt. A group of twenty-eight Asian women aged 20-45 years volunteered to attend the laboratory over several weeks. The fasted volunteers were randomised to one of three experimental drinks: 200 ml skimmed milk containing 250, 500 or 1000 mg Ca. A subgroup of seven volunteers also received a calcium gluconate/carbonate salt containing 1000 mg Ca in 200 ml water. Serial blood samples and urine were collected for 5 h from baseline. Different doses of Ca in milk resulted in a graded response in serum corrected Ca, PTH and C-telopeptide of type I collagen (CTx) but not ionised Ca. Serum Ca increased in response to all milk drinks and from 2 to 5 h the blood Ca levels were significantly different for the 250 and 1000 mg doses, as was the integrated response between the loads. The PTH response to the two higher doses was significantly more than following the 250 mg dose. The integrated response for CTx and urinary Ca between all three doses of Ca in milk was significantly different. A dose of Ca salt elicited a more immediate response reaching a plateau faster, and declining faster to baseline. Fortified milk is a safe matrix for delivering larger doses of Ca.
  • Item
    Effects of dietary fibre and tea catechin, ingredients of the Japanese diet, on quol production and bone mineral density in isoflavone-treated ovariectomised mice
    (Cambridge University Press, 2012) Tousen Y; Uehara M; Kruger MC; Ishimi Y
    Equol is a metabolite of the isoflavone daidzein (Dz) and is produced by the bacterial microflora in the distal intestine and colon. Some epidemiological studies have reported an association between increased equol production and intakes of green tea or dietary fibre, which are ingredients of the standard Japanese diet. We examined the effects of a diet supplemented with Dz and tea catechin or dietary fibre on equol production and bone mineral density in ovariectomised (OVX) mice. Female mice of the ddY strain were either sham operated or OVX. OVX mice were fed a control diet, a 0·1 % Dz-supplemented diet or a 0·1 % Dz diet supplemented with one of the food components commonly consumed in the Japanese diet. The mice were given 1 % tea catechin (w/w) as part of the diet in Expt 1 or 5 % polydextrose (PD) and 5 % raffinose (Raf) (w/w) as part of the diet in Expt 2. Catechin reduced serum equol levels and attenuated the beneficial effect of Dz on femoral bone loss. The soluble dietary fibres PD and Raf stimulated equol production, and enhanced the bone-protective effects of Dz on femoral bone. These results suggest that dietary fibre, in particular, PD, may alter the bioavailability of isoflavones and prevent osteopenia in OVX mice.
  • Item
    Increased intake of selected vegetables, herbs and fruit may reduce bone turnover in post-menopausal women
    (MDPI, 8/04/2015) Gunn CA; Weber JL; McGill A-T; Kruger MC
    Increased consumption of vegetables/herbs/fruit may reduce bone turnover and urinary calcium loss in post-menopausal women because of increased intake of polyphenols and potassium, but comparative human studies are lacking. The main aim was to compare bone turnover markers and urinary calcium excretion in two randomised groups (n = 50) of healthy post-menopausal women consuming ≥ 9 servings of different vegetables/herbs/fruit combinations (three months). Group A emphasised a generic range of vegetables/herbs/fruit, whereas Group B emphasised specific vegetables/herbs/fruit with bone resorption-inhibiting properties (Scarborough Fair Diet), with both diets controlled for potential renal acid load (PRAL). Group C consumed their usual diet. Plasma bone markers, urinary electrolytes (24 h) and estimated dietary PRAL were assessed at baseline and 12 weeks. Procollagen type I N propeptide (PINP) decreased (-3.2 μg/L, p < 0.01) in the B group only, as did C-terminal telopeptide of type I collagen (CTX) (-0.065 μg/L, p < 0.01) in women with osteopenia compared to those with normal bone mineral density (BMD) within this group. Intervention Groups A and B had decreased PRAL, increased urine pH and significantly decreased urinary calcium loss. Urinary potassium increased in all groups, reflecting a dietary change. In conclusion, Group B demonstrated positive changes in both turnover markers and calcium conservation.
  • Item
    The Preventive Effects of Greenshell Mussel (Perna canaliculus) on Early-Stage Metabolic Osteoarthritis in Rats with Diet-Induced Obesity
    (MDPI (Basel, Switzerland), 15/07/2019) Siriarchavatana P; Kruger MC; Miller MR; Tian HS; Wolber FM
    The prevalence of osteoarthritis (OA) is rising worldwide, with the most pronounced increase being in the category of metabolic-associated osteoarthritis (MetOA). This is predicted to worsen with the global rise in aging societies and obesity. To address this health burden, research is being conducted to identify foods that can reduce the incidence or severity of MetOA. Oil from the Greenshell mussel (Perna canaliculus) (GSM), a native New Zealand shellfish, has been successfully used to reduce OA symptoms. The current study assessed the effect of including flash-dried powder from whole GSM meat as part of a normal (control) versus high-fat/high-sugar (HFHS) diet for 13 weeks on the development of MetOA in rats. Rats fed a HFHS diet developed metabolic dysregulation and obesity with elevated plasma leptin and HbA1C concentrations. Visible damage to knee joint cartilage was minimal, but plasma levels of C telopeptide of type II collagen (CTX-II), a biomarker of cartilage degradation, were markedly higher in HFHS-fed rats compared to control-fed rats. However, rats fed the HFHS diet containing GSM had significantly reduced serum CTX-II. Inclusion of GSM in rats fed the control diet also lowered CTX-II. These findings suggest that dietary GSM can reduce the incidence or slow the progression of early MetOA.