Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
3 results
Search Results
Item Genetic variation in surface temperature measured using infra-red thermography and genetic associations with production traits in grazing dairy cattle(Taylor and Francis Group, 2024-01-01) Douie JS; Lopez-Villalobos N; Dukkipati VSR; Udy GIncreasing global temperatures and the incidence of extreme weather conditions will result in heat stress becoming a greater issue in production animals. Genetic selection and breeding for heat-tolerant animals have been promoted as a possible mitigation strategy in dairy cattle. The objectives of this study were to obtain in-field skin temperature measurements of the eye, muzzle and udder using infra-red thermography to examine the genetic variation in skin temperature within cows of a dairy herd and to estimate the genetic correlations between skin temperature and production traits. Thermal images and herd test records were obtained for the dairy herd at Massey University’s dairy farm 1. Estimates of (co)variances were obtained using the JWAS program with univariate and bivariate animal models. The heritability estimates for the eye, muzzle and udder temperature were low to moderate at 0.20, 0.24 and 0.39, respectively. All genetic correlations between production and temperature traits were positive except for eye temperature with milk yield and protein yield which was negative and weak. These results indicate that it may be possible to select for a greater skin temperature, however, these results need to be validated using a larger sample size.Item Estimates of Genetic Parameters for Milk, the Occurrence of and Susceptibility to Clinical Lameness and Claw Disorders in Dairy Goats(MDPI (Basel, Switzerland), 2023-04-17) Jaques N; Turner S-A; Vallée E; Heuer C; Lopez-Villalobos N; Davis ME; Bagnicka EThe New Zealand goat industry accesses niche markets for high-value products, mainly formula for infants and young children. This study aimed to estimate the genetic parameters of occurrence and susceptibility of clinical lameness and selected claw disorders and establish their genetic associations with milk production traits. Information on pedigree, lameness, claw disorders, and milk production was collected on three farms between June 2019 and July 2020. The dataset contained 1637 does from 174 sires and 1231 dams. Estimates of genetic and residual (co)variances, heritabilities, and genetic and phenotypic correlations were obtained with uni- and bi-variate animal models. The models included the fixed effects of farm and parity, deviation from the median kidding date as a covariate, and the random effects of animal and residual error. The heritability (h2) estimates for lameness occurrence and susceptibility were 0.07 and 0.13, respectively. The h2 estimates for claw disorder susceptibilities ranged from 0.02 to 0.23. The genotypic correlations ranged from weak to very strong between lameness and milk production traits (-0.94 to 0.84) and weak to moderate (0.23 to 0.84) between claw disorder and milk production traits.Item Estimation of genetic parameters and individual and maternal breed, heterosis, and recombination loss effects for production and fertility traits of spring-calved cows milked once daily or twice daily in New Zealand(Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association, 2023-01) Jayawardana JMDR; Lopez-Villalobos N; Hickson RE; McNaughton LRThe objectives of this study were to estimate genetic parameters and individual and maternal breed, heterosis, and recombination loss effects for milk production and fertility traits of Holstein Friesian (F), Jersey (J), and crossbred Holstein Friesian and Jersey (F × J) cows milked once daily (OAD) or twice daily (TAD) in New Zealand. Data on 278,776 lactations from 30,217 OAD and 170,680 TAD milking cows across 644 spring-calving herds were available. Genetic parameters and individual and maternal breed, heterosis, and recombination loss estimates were obtained from univariate animal models. Heritability and repeatability estimates for milk production, milk composition, and fertility traits were consistent across the milking frequencies. Heritability estimates for yields of milk, fat, protein, and lactose varied between 0.21 and 0.29 in OAD and TAD. Heritability estimates for fertility traits ranged from 0.01 to 0.08 in both populations, and estimates were slightly greater in TAD than OAD milking cows. In both milking populations, individual breed effects for yields were in favor of F cows; however, maternal breed effects for yields were in favor of J dams. Jersey cows were more fertile than the F cows in both milking populations, but maternal breed effects for fertility traits were in favor of F dams. Individual heterosis effects were favorable for all traits and were consistent across milking regimens. Crossbred F × J cows had significantly shorter intervals from start of mating to first service and from start of mating to conception, and a higher proportion of 3-wk submission, 3-wk in calf, and 3-wk calving relative to the average of purebred F and J cows. Recombination loss effects were not always unfavorable for production and fertility traits, but most estimates were small with larger standard errors. Favorable maternal heterosis effects were associated with production traits in both milking systems, but maternal heterosis effects were less likely to influence reproductive performance.
