Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
2 results
Search Results
Item Effects of Green and Gold Kiwifruit Varieties on Antioxidant Neuroprotective Potential in Pigs as a Model for Human Adults.(MDPI (Basel, Switzerland), 2024-04-09) Kanon AP; Giezenaar C; Roy NC; Jayawardana IA; Lomiwes D; Montoya CA; McNabb WC; Henare SJ; Digiacomo MKiwifruit (KF) has shown neuroprotective potential in cell-based and rodent models by augmenting the capacity of endogenous antioxidant systems. This study aimed to determine whether KF consumption modulates the antioxidant capacity of plasma and brain tissue in growing pigs. Eighteen male pigs were divided equally into three groups: (1) bread, (2) bread + Actinidia deliciosa cv. 'Hayward' (green-fleshed), and (3) bread + A. chinensis cv. 'Hort16A' (yellow-fleshed). Following consumption of the diets for eight days, plasma and brain tissue (brain stem, corpus striatum, hippocampus, and prefrontal cortex) were collected and measured for biomarkers of antioxidant capacity, enzyme activity, and protein expression assessments. Green KF significantly increased ferric-reducing antioxidant potential (FRAP) in plasma and all brain regions compared with the bread-only diet. Gold KF increased plasma ascorbate concentration and trended towards reducing acetylcholinesterase activity in the brain compared with the bread-only diet. Pearson correlation analysis revealed a significant positive correlation between FRAP in the brain stem, prefrontal cortex, and hippocampus with the total polyphenol concentration of dietary interventions. These findings provide exploratory evidence for the benefits of KF constituents in augmenting the brain's antioxidant capacity that may support neurological homeostasis during oxidative stress.Item Actinidin in Green and SunGold Kiwifruit Improves Digestion of Alternative Proteins-An In Vitro Investigation(MDPI (Basel, Switzerland), 2022-09-06) Kaur L; Mao B; Bailly J; Oladeji O; Blatchford P; McNabb WC; Recio IBoth Hayward (green) and SunGold (gold) kiwifruit varieties contain a proteolytic enzyme, actinidin, that has been reported to enhance the upper tract digestion of animal proteins. Unlike the other gold varieties, which do not contain any actinidin, the SunGold variety contains significantly higher actinidin activity, but its activity is still much lower than that present in the green (Hayward) fruit. The objective of this study was to determine the effectiveness of actinidin in Hayward and SunGold kiwifruit in digesting alternative proteins, including pea protein, almonds, tofu, and quinoa. The protein sources were digested using a three-stage in vitro oral-gastro-small intestinal digestion model. The findings showed that both kiwifruit extracts enhanced the breakdown (observed through SDS-PAGE) for all the studied protein sources, particularly during gastric digestion, possibly due to higher actinidin activity at gastric pH. The increase in the rate of protein breakdown was probably due to the broader specificity of actinidin compared to pepsin. For many protein sources, most of the intact proteins disappeared within the first few minutes of gastric digestion with added kiwifruit extract. Green kiwifruit extract, due to its higher actinidin activity, had a higher effect on protein breakdown than the SunGold extract. However, for some proteins and under certain digestion conditions, SunGold extract resulted in higher protein breakdown. The latter, in the absence of any digestive enzymes, also led to some protein breakdown during the small intestinal digestion phase, which was not the case for the green kiwifruit extract. The green kiwifruit extract led to the greater breakdown of polypeptide chains of Pru-du 6, a major allergen in almonds. The results, for the first time, suggest that both Hayward and SunGold kiwifruit can lead to improved breakdown and digestion of alternative proteins when consumed as part of a meal; and therefore, have the potential to be used as a digestive aid in population groups looking to achieve faster and greater protein digestion such as athletes, elderly and people with the impaired digestive system.
