Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Hantavirus Expansion Trends in Natural Host Populations in Brazil.
    (MDPI (Basel, Switzerland), 2024-07-17) Mello JHF; Muylaert RL; Grelle CEV; Kemenesi G; Kurucz K
    Hantaviruses are zoonotic agents responsible for causing Hantavirus Cardiopulmonary Syndrome (HCPS) in the Americas, with Brazil ranking first in number of confirmed HCPS cases in South America. In this study, we simulate the monthly spread of highly lethal hantavirus in natural hosts by conjugating a Kermack-McCormick SIR model with a cellular automata model (CA), therefore simultaneously evaluating both in-cell and between-cell infection dynamics in host populations, using recently compiled data on main host species abundances and confirmed deaths by hantavirus infection. For both host species, our models predict an increase in the area of infection, with 22 municipalities where no cases have been confirmed to date expected to have at least one case in the next decade, and a reduction in infection in 11 municipalities. Our findings support existing research and reveal new areas where hantavirus is likely to spread within recognized epicenters. Highlighting spatial-temporal trends and potential expansion, we emphasize the increased risk due to pervasive habitat fragmentation and agricultural expansion. Consistent prevention efforts and One Health actions are crucial, especially in newly identified high-risk municipalities.
  • Item
    Community health and human-animal contacts on the edges of Bwindi Impenetrable National Park, Uganda
    (PLOS, 2021-11-24) Muylaert RL; Davidson B; Ngabirano A; Kalema-Zikusoka G; MacGregor H; Lloyd-Smith JO; Fayaz A; Knox MA; Hayman DTS; Fèvre E
    Cross-species transmission of pathogens is intimately linked to human and environmental health. With limited healthcare and challenging living conditions, people living in poverty may be particularly susceptible to endemic and emerging diseases. Similarly, wildlife is impacted by human influences, including pathogen sharing, especially for species in close contact with people and domesticated animals. Here we investigate human and animal contacts and human health in a community living around the Bwindi Impenetrable National Park (BINP), Uganda. We used contact and health survey data to identify opportunities for cross-species pathogen transmission, focusing mostly on people and the endangered mountain gorilla. We conducted a survey with background questions and self-reported diaries to investigate 100 participants' health, such as symptoms and behaviours, and contact patterns, including direct contacts and sightings over a week. Contacts were revealed through networks, including humans, domestic, peri-domestic, and wild animal groups for 1) contacts seen in the week of background questionnaire completion, and 2) contacts seen during the diary week. Participants frequently felt unwell during the study, reporting from one to 10 disease symptoms at different intensity levels, with severe symptoms comprising 6.4% of the diary records and tiredness and headaches the most common symptoms. After human-human contacts, direct contact with livestock and peri-domestic animals were the most common. The contact networks were moderately connected and revealed a preference in contacts within the same taxon and within their taxa groups. Sightings of wildlife were much more common than touching. However, despite contact with wildlife being the rarest of all contact types, one direct contact with a gorilla with a timeline including concerning participant health symptoms was reported. When considering all interaction types, gorillas mostly exhibited intra-species contact, but were found to interact with five other species, including people and domestic animals. Our findings reveal a local human population with recurrent symptoms of illness in a location with intense exposure to factors that can increase pathogen transmission, such as direct contact with domestic and wild animals and proximity among animal species. Despite significant biases and study limitations, the information generated here can guide future studies, such as models for disease spread and One Health interventions.
  • Item
    The future of zoonotic risk prediction
    (The Royal Society, 2021-11-08) Carlson CJ; Farrell MJ; Grange Z; Han BA; Mollentze N; Phelan AL; Rasmussen AL; Albery GF; Bett B; Brett-Major DM; Cohen LE; Dallas T; Eskew EA; Fagre AC; Forbes KM; Gibb R; Halabi S; Hammer CC; Katz R; Kindrachuk J; Muylaert RL; Nutter FB; Ogola J; Olival KJ; Rourke M; Ryan SJ; Ross N; Seifert SN; Sironen T; Standley CJ; Taylor K; Venter M; Webala PW
    In the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges?