Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
2 results
Search Results
Item Blockchain and 6G-Enabled IoT(MDPI (Basel, Switzerland), 2022-12) Pajooh HH; Demidenko S; Aslam S; Harris M; Pegoraro PA; Ghiani EUbiquitous computing turns into a reality with the emergence of the Internet of Things (IoT) adopted to connect massive numbers of smart and autonomous devices for various applications. 6G-enabled IoT technology provides a platform for information collection and processing at high speed and with low latency. However, there are still issues that need to be addressed in an extended connectivity environment, particularly the security and privacy domain challenges. In addition, the traditional centralized architecture is often unable to address problems associated with access control management, interoperability of different devices, the possible existence of a single point of failure, and extensive computational overhead. Considering the evolution of decentralized access control mechanisms, it is necessary to provide robust security and privacy in various IoT-enabled industrial applications. The emergence of blockchain technology has changed the way information is shared. Blockchain can establish trust in a secure and distributed platform while eliminating the need for third-party authorities. We believe the coalition of 6G-enabled IoT and blockchain can potentially address many problems. This paper is dedicated to discussing the advantages, challenges, and future research directions of integrating 6G-enabled IoT and blockchain technology for various applications such as smart homes, smart cities, healthcare, supply chain, vehicle automation, etc.Item Hyperledger Fabric Blockchain for Securing the Edge Internet of Things(MDPI (Basel, Switzerland), 7/01/2021) Pajooh HH; Rashid M; Alam F; Demidenko SProviding security and privacy to the Internet of Things (IoT) networks while achieving it with minimum performance requirements is an open research challenge. Blockchain technology, as a distributed and decentralized ledger, is a potential solution to tackle the limitations of the current peer-to-peer IoT networks. This paper presents the development of an integrated IoT system implementing the permissioned blockchain Hyperledger Fabric (HLF) to secure the edge computing devices by employing a local authentication process. In addition, the proposed model provides traceability for the data generated by the IoT devices. The presented solution also addresses the IoT systems’ scalability challenges, the processing power and storage issues of the IoT edge devices in the blockchain network. A set of built-in queries is leveraged by smart-contracts technology to define the rules and conditions. The paper validates the performance of the proposed model with practical implementation by measuring performance metrics such as transaction throughput and latency, resource consumption, and network use. The results show that the proposed platform with the HLF implementation is promising for the security of resource-constrained IoT devices and is scalable for deployment in various IoT scenarios.

