Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Characterizing the dynamics of the rumen microbiota, its metabolites, and blood metabolites across reproductive stages in Small-tailed Han sheep.
    (American Society for Microbiology, 2023-11-10) Sha Y; Liu X; Pu X; He Y; Wang J; Zhao S; Shao P; Wang F; Xie Z; Chen X; Yang W
    Different reproductive stages of mammals involve complex biological processes, and the intestinal microbiota, as an endocrine organ or an “invisible organ,” is involved in the regulation of hormone levels, immune function, and metabolism. However, the effects of the rumen microbiota, its metabolites, and blood metabolites on the reproductive performance of ruminants remain unclear. This study revealed that the Prevotella abundance increased significantly during pregnancy (P < 0.01); the Fibrobacter abundance increased significantly during lactation (P < 0.05); and rumen microbial carbohydrate metabolism, glucose biosynthesis, and metabolic functions were significantly enriched during pregnancy (P < 0.05). Microbial metabolic profile analysis showed that the differentially abundant microbial metabolites during pregnancy and lactation were mainly enriched in the biosynthesis of ubiquinone and other terpenoid quinones, and there was a certain correlation with the microbiota. Among them, sapindoside A was increased during pregnancy, nicotinamide riboside and β-cryptoxanthin were reduced during pregnancy, and L-tryptophan was significantly increased during lactation. In addition, the volatile fatty acid levels in lactation were significantly higher than those in non-pregnancy and pregnancy (P < 0.05), and the NH3-N content during pregnancy was significantly higher than that during lactation and non-pregnancy (P < 0.05). Moreover, there were differences in the serum metabolite levels at different reproductive stages, and similar metabolites existed when comparing the rumen metabolites, which were mainly enriched in arachidonic acid metabolism, vitamin B6 metabolism, and ABC transporter protein, resulting in significantly higher serum IgA and IgM levels during lactation than during non-pregnancy and pregnancy (P < 0.05).
  • Item
    Rumen Epithelial Development- and Metabolism-Related Genes Regulate Their Micromorphology and VFAs Mediating Plateau Adaptability at Different Ages in Tibetan Sheep.
    (MDPI (Basel, Switzerland), 2022-12-16) Sha Y; He Y; Liu X; Zhao S; Hu J; Wang J; Li S; Li W; Shi B; Hao Z; Martinez-Pastor F
    The rumen is an important hallmark organ of ruminants and plays an important role in the metabolism and immune barrier of Tibetan sheep on the Plateau. However, there are few studies on rumen development and metabolism regulation in Tibetan sheep at different ages. Here, we comprehensively analyzed the immune function, fermentation function, rumen epithelial micromorphology and transcriptome profile of Tibetan sheep at different ages. The results showed that the concentration of IgG decreased and the concentration of IgM increased with age (p < 0.05), and the highest concentration of IgA was observed at 1.5 and 3.5 years of age. In terms of rumen fermentation characteristics, VFAs of 4-month-old lambs were the highest, followed by VFAs and NH3-N of Tibetan sheep at 3.5 years of age. Hematoxylin-eosin staining and transmission electron microscopy section examination of rumen epithelial tissue showed that the rumen papilla width increased with age (p < 0.001), the thickness of the stratum corneum decreased, the cells in the stratum corneum showed accelerated migration and the thickness of the rumen muscle layer increased (p < 0.001). Desmosomal junctions between the layers of rumen epithelium increased at 1.5 and 3.5 years old, forming a compact barrier structure, and the basal layer had more mitochondria involved in the regulation of energy metabolism. RNA-seq analysis revealed that a total of 1006 differentially expressed genes (DEGs) were identified at four ages. The DEGs of Tibetan sheep aged 4 months and 6 years were mainly enriched in the oxidation−reduction process and ISG15-protein conjugation pathway. The 1.5 and 3.5-year-olds were mainly enriched in skeletal muscle thin filament assembly, mesenchyme migration and the tight junction pathway. WGCNA showed that DEGs related to rumen microbiota metabolite VFAs and epithelial morphology were enriched in “Metabolism of xenobiotics by cytochrome P450, PPAR signaling pathway, Butanoate metabolism pathways” and participated in the regulation of rumen epithelial immune and fermentation metabolism functions of Tibetan sheep at different ages. This study systematically revealed the regulatory mechanism of rumen epithelial development and metabolism in the plateau adaptation of Tibetan sheep, providing a new approach for the study of plateau adaptation.