Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Adopting augmented reality to avoid underground utilities strikes during excavation : a thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy, School of Built Environment, College of Science, Massey University, New Zealand
    (Massey University, 2025) Khorrami Shad, Hesam
    The construction industry constantly pursues innovative methods to improve safety, enhance productivity, and reduce costs and project durations. Augmented Reality (AR) is a promising technology, potentially bringing about transformative changes in construction. AR is a promising technology for visualizing data in construction sites and preventing clashes and accidents. One of its promising applications is in the excavation sector, where accidental strikes on underground utilities pose serious safety risks, delays, and costly damages. However, while AR has gained increasing attention in recent years, its integration into construction practice remains limited. To address this limitation, this research investigates the potential of AR to facilitate identifying underground utility locations through a systematic review, industry engagement, and user-centred experimentation. Initially, a systematic literature review was conducted to explore the current applications of AR in construction safety. This review identified the safety purposes of AR across three project phases: pre-event (e.g., training, safety inspections, hazard alerting, enhanced visualization), during-event (e.g., pinpointing hazards), and post-event (e.g., safety estimation). However, the review also revealed a notable lack of studies focused on AR applications in excavation activities, particularly for underground utility strike prevention. In response, a study was undertaken to understand the needs, expectations, and challenges associated with adopting AR in the excavation sector. 31 professionals from the excavation industry participated in the within-subject experiment, interacting with two AR prototypes, delivered via Optical See-Through (OST) and Video See-Through (VST) devices. The findings indicated a clear preference for AR over traditional methods such as paper-based drawings. Participants showed a preference for VST rather than OST, given their familiarity with VST devices such as tablets. Further, accessibility emerged as the primary barrier to adopting AR within the excavation industry. Building on the literature and industry insights, an experimental study was designed to evaluate the effectiveness of different AR visualization methods in underground utility detection. A within-subject experiment involving 60 participants was conducted to compare four of the most cited visualization techniques for underground utilities: X-Ray, Shadow, Cross-Sectional, and a newly developed Combination method. Drawing on the Theory of Affordances and Task Load analysis, the study found that the Combination and X-Ray visualization methods perform superior to the Shadow. These results provide empirical support for the user-centered design of AR visualization techniques in excavation practice. This research contributes to the fields of human-computer interaction, construction safety, and digital technology adoption by advancing the use of AR for underground utility strike prevention. The study shifts the focus of AR from general safety training to real-time, spatial visualization for excavation, offering both theoretical insights and practical applications. Methodologically, it follows a structured mixed-methods approach, combining literature review, industry engagement, and experimental testing. Practically, it identifies user preferences, visualization methods, and key adoption factors such as usability and accessibility. Overall, this thesis fills the gap between emerging AR technologies and their integration into safer excavation practices.
  • Item
    Video see-through augmented reality fire safety training: A comparison with virtual reality and video training
    (Elsevier B.V., 2024-12-10) Domgue K LI; Paes D; Feng Z; Mander S; Datoussaid S; Descamps T; Rahouti A; Lovreglio R
    Safety training is crucial to mitigate the risk of damage when a disaster occurs and can play a vital role in enhancing community response. Augmented Reality (AR) is an emerging technology for safety training that holds great pedagogical potential. This study aims to explore the effectiveness of AR training in terms of knowledge acquisition and retention, as well as self-efficacy enhancement. We developed a new video see-through AR training tool on a tablet to teach users about operating a fire extinguisher to put out a fire following the PASS procedure: Pull, Aim, Squeeze, and Sweep (PASS). The AR training tool was tested with 60 participants. Test results were systematically compared with findings from the literature investigating Virtual Reality (VR) and video-based safety training. The findings indicate that, directly after the training, AR outperformed traditional video training in terms of knowledge retention, long-term self-efficacy, and quality of instructions. However, the AR experience was not as effective as the VR experience in all these areas, but the AR group had a smaller decrease in knowledge over time. These findings suggest that the AR-based training approach offers benefits in long-term memory recall.
  • Item
    Augmented reality applications in construction productivity: A systematic literature review
    (Elsevier Ltd, 2024-10) Xu Z; Feng Z; Babaeian Jelodar M; Guo BHW
    Augmented reality (AR) has been extensively researched for its applications in the construction industry. However, there is limited focus on its effects on productivity. This paper aims to bridge the gap by using a systematic literature review to investigate AR applications in the planning, design, and construction phases, focusing on their mechanisms for enhancing productivity. The paper classifies AR applications by their target construction tasks, features, and factors contributing to improved productivity. Additionally, it proposes a framework for prototyping AR applications and evaluating their effects on productivity. Key findings reveal several contributions: the need for further investigation of AR for positioning and hazard notification tasks; the utilisation of different augmentation methods, display tools, and tracking methods based on specific construction tasks; AR's positive impact on productivity in design review, discrepancy check, assembly, and hazard notification, while future research on evaluating productivity in progress management, planning simulation, and positioning.
  • Item
    Augmented reality for pedestrian evacuation research: Promises and limitations
    (Elsevier Ltd, 2020-08) Lovreglio R; Kinateder M
    Evacuation effectively mitigates potential harm for building occupants in case of emergencies. Virtual and Augmented Reality (VR and AR) have emerged as research tools and means to enhance evacuation preparedness and effectiveness. Unlike VR, where users are immersed in computer-generated environments, the more novel AR technology allows users to experience digital content merged into the real world. Here, we review current (2020) relevant literature on AR as a tool to study and improve building evacuation triggered by a variety of disasters such as fires, earthquakes or tsunami. Further, we provide an overview of application goals, existing hardware and what evacuation stages can be influenced by AR applications. Finally, we discuss strengths, weaknesses, and opportunities (SWOT) of AR to study evacuation behaviour and for research purposes.