Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
11 results
Search Results
Item Case-Control Study of Congenital Anomalies: Study Methods and Nonresponse Bias Assessment.(Wiley Periodicals LLC, 2025-02-20) Eng A; Mannetje AT; Ellison-Loschmann L; Borman B; Cheng S; Lawlor DA; Douwes J; Pearce NBACKGROUND: To describe the methods of a congenital anomalies case-control study conducted in New Zealand, discuss the encountered methodological difficulties, and evaluate the potential for nonresponse bias. METHODS: The potential cases (n = 2710) were New Zealand live births in 2007-2009 randomly selected from the New Zealand Congenital Anomalies Registry. The potential controls (n = 2989) included live births identified from the Maternity and Newborn Information System, frequency matched to cases by the child's year of birth and sex. Mothers were invited to complete an interview covering demographic, lifestyle, and environmental factors. Response probabilities for case and control mothers were evaluated in relation to maternal age, deprivation, occupation, and ethnicity, available from the Electoral Roll, and inverse probability weights (IPWs) for participation were calculated. Odds ratios (ORs) for key demographic and selected risk factors were estimated through unconditional logistic regression, with and without IPW. RESULTS: A total of 652 (24%) of case mothers and 505 (17%) of control mothers completed the interview. Younger and more deprived mothers were underrepresented among the participants, particularly for controls, resulting in inflated ORs of associations with congenital anomalies for younger age, Māori ethnicity, deprivation, and risk factors under study, such as blue-collar occupations and smoking, indicative of nonresponse bias. Nonresponse bias was minimized through IPW, resulting in ORs and exposure prevalence estimates similar to those based on the prerecruitment sample. CONCLUSIONS: Attaining high participation rates was difficult in this study that was conducted in new mothers, particularly for the controls. The resulting nonresponse bias was minimized through IPW.Item Characterisation of the Plasma and Faecal Metabolomes in Participants with Functional Gastrointestinal Disorders.(MDPI (Basel, Switzerland), 2024-12-16) Fraser K; James SC; Young W; Gearry RB; Heenan PE; Keenan JI; Talley NJ; McNabb WC; Roy NC; Fukui HThere is evidence of perturbed microbial and host processes in the gastrointestinal tract of individuals with functional gastrointestinal disorders (FGID) compared to healthy controls. The faecal metabolome provides insight into the metabolic processes localised to the intestinal tract, while the plasma metabolome highlights the overall perturbances of host and/or microbial responses. This study profiled the faecal (n = 221) and plasma (n = 206) metabolomes of individuals with functional constipation (FC), constipation-predominant irritable bowel syndrome (IBS-C), functional diarrhoea (FD), diarrhoea-predominant IBS (IBS-D) and healthy controls (identified using the Rome Criteria IV) using multimodal LC-MS technologies. Discriminant analysis separated patients with the 'all constipation' group (FC and IBS-C) from the healthy control group and 'all diarrhoea' group (FD and IBS-D) from the healthy control group in both sample types. In plasma, almost all multimodal metabolite analyses separated the 'all constipation' or 'all diarrhoea' group from the healthy controls, and the IBS-C or IBS-D group from the healthy control group. Plasma phospholipids and metabolites linked to several amino acid and nucleoside pathways differed (p < 0.05) between healthy controls and IBS-C. In contrast, metabolites involved in bile acid and amino acid metabolism were the key differentiating classes in the plasma of subjects with IBS-D from healthy controls. Faecal lipids, particularly ceramides, diglycerides, and triglycerides, varied (p < 0.05) between healthy controls and the 'all constipation' group and between healthy controls and 'all diarrhoea' group. The faecal and plasma metabolomes showed perturbations between constipation, diarrhoea and healthy control groups that may reflect processes and mechanisms linked to FGIDs.Item Bone Health in Premenopausal Women with Coeliac Disease: An Observational Study.(MDPI (Basel, Switzerland), 2024-07-09) Schraders K; Coad J; Kruger M; Iacone RLow bone mineral density (BMD) is common in adults with coeliac disease (CD), even in individuals adhering to a gluten-free diet (GFD). Women are more likely to have low BMD and have an increased risk of osteoporosis, so women with pre-existing low BMD related to CD are at an even higher risk. BMD assessed by dual X-ray absorptiometry (DXA) and bone quality assessed through quantitative ultrasound (QUS) were investigated in 31 premenopausal women with CD consuming a GFD, and 39 matched healthy controls from the Lower North Island, New Zealand. In addition, bone metabolism and nutrient status were assessed, and four-day diet diaries were used to estimate nutrient intake. No statistically significant differences were found in BMD assessed by DXA between the two groups at the hip, lumbar spine or forearm. However, the parameters measured by the QUS were significantly lower in CD participants. Dietary data indicated significantly lower intakes of energy, dietary fibre, magnesium and phosphorus in women with CD, likely as a result of a reduced intake of wholegrain foods, and suggested that both groups had inadequate intake of calcium. No significant differences were demonstrated in biochemical parameters. BMD and bone biomarkers indicated no differences between coeliac and healthy women in New Zealand. However, these findings suggest that QUS may be more sensitive for the coeliac population, due to the disease's affect on the trabecular bone, and warrant further research.Item Thromboelastography in obese horses with insulin dysregulation compared to healthy controls.(John Wiley and Sons, Inc., 2022-05-01) Lovett AL; Gilliam LL; Sykes BW; McFarlane DBACKGROUND: Both obesity and metabolic syndrome are associated with hypercoagulability in people, increasing the risk of cardiovascular disease and thromboembolic events. Whether hypercoagulability exists in obese, insulin-dysregulated horses is unknown. HYPOTHESIS/OBJECTIVES: To determine if coagulation profiles differ between healthy horses and those with obesity and insulin dysregulation. ANIMALS: Fifteen healthy horses (CON) and 15 obese, insulin-dysregulated horses (OBID). Individuals were university or client owned. METHODS: Case-control study. Obesity was defined as a body condition score (BCS) ≥7.5/9 (modified Henneke scale). Insulin dysregulation status was assessed by an oral sugar test (OST). Kaolin-thromboelastography and traditional coagulation variables were compared between groups. The direction and strength of the association between coagulation variables and BCS and OST results were determined using Spearman's correlation. RESULTS: Thromboelastography variables MA (OBID: 69.5 ± 4.5 mm; CON: 64.8 ± 4.3 mm; P = .007) and G-value (OBID: 11749 ± 2536 dyn/m2 ; CON: 9319 ± 1650 dyn/m2 ; P = .004) were higher in OBID compared to CON. Positive correlations between MA and BCS (R = 0.45, P = .01) and serum insulin (T0 : R = 0.45, P = .01; T60 : R = 0.39, P = .03), and G-value and BCS (R = 0.46, P = .01), and serum insulin (T0 : R = 0.48, P = .007; T60 : R = 0.43, P = .02; T90 : R = 0.38, P = .04) were present. CONCLUSIONS AND CLINICAL IMPORTANCE: Obese, insulin-dysregulated horses are hypercoagulable compared to healthy controls.Item Two genome-wide interaction loci modify the association of nonsteroidal anti-inflammatory drugs with colorectal cancer.(American Association for the Advancement of Science, 2024-05-29) Drew DA; Kim AE; Lin Y; Qu C; Morrison J; Lewinger JP; Kawaguchi E; Wang J; Fu Y; Zemlianskaia N; Díez-Obrero V; Bien SA; Dimou N; Albanes D; Baurley JW; Wu AH; Buchanan DD; Potter JD; Prentice RL; Harlid S; Arndt V; Barry EL; Berndt SI; Bouras E; Brenner H; Budiarto A; Burnett-Hartman A; Campbell PT; Carreras-Torres R; Casey G; Chang-Claude J; Conti DV; Devall MAM; Figueiredo JC; Gruber SB; Gsur A; Gunter MJ; Harrison TA; Hidaka A; Hoffmeister M; Huyghe JR; Jenkins MA; Jordahl KM; Kundaje A; Le Marchand L; Li L; Lynch BM; Murphy N; Nassir R; Newcomb PA; Newton CC; Obón-Santacana M; Ogino S; Ose J; Pai RK; Palmer JR; Papadimitriou N; Pardamean B; Pellatt AJ; Peoples AR; Platz EA; Rennert G; Ruiz-Narvaez E; Sakoda LC; Scacheri PC; Schmit SL; Schoen RE; Stern MC; Su Y-R; Thomas DC; Tian Y; Tsilidis KK; Ulrich CM; Um CY; van Duijnhoven FJB; Van Guelpen B; White E; Hsu L; Moreno V; Peters U; Chan AT; Gauderman WJRegular, long-term aspirin use may act synergistically with genetic variants, particularly those in mechanistically relevant pathways, to confer a protective effect on colorectal cancer (CRC) risk. We leveraged pooled data from 52 clinical trial, cohort, and case-control studies that included 30,806 CRC cases and 41,861 controls of European ancestry to conduct a genome-wide interaction scan between regular aspirin/nonsteroidal anti-inflammatory drug (NSAID) use and imputed genetic variants. After adjusting for multiple comparisons, we identified statistically significant interactions between regular aspirin/NSAID use and variants in 6q24.1 (top hit rs72833769), which has evidence of influencing expression of TBC1D7 (a subunit of the TSC1-TSC2 complex, a key regulator of MTOR activity), and variants in 5p13.1 (top hit rs350047), which is associated with expression of PTGER4 (codes a cell surface receptor directly involved in the mode of action of aspirin). Genetic variants with functional impact may modulate the chemopreventive effect of regular aspirin use, and our study identifies putative previously unidentified targets for additional mechanistic interrogation.Item Genome-wide interaction analysis of folate for colorectal cancer risk.(Elsevier B.V., 2023-11) Bouras E; Kim AE; Lin Y; Morrison J; Du M; Albanes D; Barry EL; Baurley JW; Berndt SI; Bien SA; Bishop TD; Brenner H; Budiarto A; Burnett-Hartman A; Campbell PT; Carreras-Torres R; Casey G; Cenggoro TW; Chan AT; Chang-Claude J; Conti DV; Cotterchio M; Devall M; Diez-Obrero V; Dimou N; Drew DA; Figueiredo JC; Giles GG; Gruber SB; Gunter MJ; Harrison TA; Hidaka A; Hoffmeister M; Huyghe JR; Joshi AD; Kawaguchi ES; Keku TO; Kundaje A; Le Marchand L; Lewinger JP; Li L; Lynch BM; Mahesworo B; Männistö S; Moreno V; Murphy N; Newcomb PA; Obón-Santacana M; Ose J; Palmer JR; Papadimitriou N; Pardamean B; Pellatt AJ; Peoples AR; Platz EA; Potter JD; Qi L; Qu C; Rennert G; Ruiz-Narvaez E; Sakoda LC; Schmit SL; Shcherbina A; Stern MC; Su Y-R; Tangen CM; Thomas DC; Tian Y; Um CY; van Duijnhoven FJ; Van Guelpen B; Visvanathan K; Wang J; White E; Wolk A; Woods MO; Ulrich CM; Hsu L; Gauderman WJ; Peters U; Tsilidis KKBackground Epidemiological and experimental evidence suggests that higher folate intake is associated with decreased colorectal cancer (CRC) risk; however, the mechanisms underlying this relationship are not fully understood. Genetic variation that may have a direct or indirect impact on folate metabolism can provide insights into folate’s role in CRC. Objectives Our aim was to perform a genome-wide interaction analysis to identify genetic variants that may modify the association of folate on CRC risk. Methods We applied traditional case-control logistic regression, joint 3-degree of freedom, and a 2-step weighted hypothesis approach to test the interactions of common variants (allele frequency >1%) across the genome and dietary folate, folic acid supplement use, and total folate in relation to risk of CRC in 30,550 cases and 42,336 controls from 51 studies from 3 genetic consortia (CCFR, CORECT, GECCO). Results Inverse associations of dietary, total folate, and folic acid supplement with CRC were found (odds ratio [OR]: 0.93; 95% confidence interval [CI]: 0.90, 0.96; and 0.91; 95% CI: 0.89, 0.94 per quartile higher intake, and 0.82 (95% CI: 0.78, 0.88) for users compared with nonusers, respectively). Interactions (P-interaction < 5×10-8) of folic acid supplement and variants in the 3p25.2 locus (in the region of Synapsin II [SYN2]/tissue inhibitor of metalloproteinase 4 [TIMP4]) were found using traditional interaction analysis, with variant rs150924902 (located upstream to SYN2) showing the strongest interaction. In stratified analyses by rs150924902 genotypes, folate supplementation was associated with decreased CRC risk among those carrying the TT genotype (OR: 0.82; 95% CI: 0.79, 0.86) but increased CRC risk among those carrying the TA genotype (OR: 1.63; 95% CI: 1.29, 2.05), suggesting a qualitative interaction (P-interaction = 1.4×10-8). No interactions were observed for dietary and total folate. Conclusions Variation in 3p25.2 locus may modify the association of folate supplement with CRC risk. Experimental studies and studies incorporating other relevant omics data are warranted to validate this finding.Item Prospective and Mendelian randomization analyses on the association of circulating fatty acid binding protein 4 (FABP-4) and risk of colorectal cancer.(BioMed Central, 2023-10-13) Nimptsch K; Aleksandrova K; Pham TT; Papadimitriou N; Janke J; Christakoudi S; Heath A; Olsen A; Tjønneland A; Schulze MB; Katzke V; Kaaks R; van Guelpen B; Harbs J; Palli D; Macciotta A; Pasanisi F; Yohar SMC; Guevara M; Amiano P; Grioni S; Jakszyn PG; Figueiredo JC; Samadder NJ; Li CI; Moreno V; Potter JD; Schoen RE; Um CY; Weiderpass E; Jenab M; Gunter MJ; Pischon TBACKGROUND: Fatty acid binding protein 4 (FABP-4) is a lipid-binding adipokine upregulated in obesity, which may facilitate fatty acid supply for tumor growth and promote insulin resistance and inflammation and may thus play a role in colorectal cancer (CRC) development. We aimed to investigate the association between circulating FABP-4 and CRC and to assess potential causality using a Mendelian randomization (MR) approach. METHODS: The association between pre-diagnostic plasma measurements of FABP-4 and CRC risk was investigated in a nested case-control study in 1324 CRC cases and the same number of matched controls within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. A two-sample Mendelian randomization study was conducted based on three genetic variants (1 cis, 2 trans) associated with circulating FABP-4 identified in a published genome-wide association study (discovery n = 20,436) and data from 58,131 CRC cases and 67,347 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry. RESULTS: In conditional logistic regression models adjusted for potential confounders including body size, the estimated relative risk, RR (95% confidence interval, CI) per one standard deviation, SD (8.9 ng/mL) higher FABP-4 concentration was 1.01 (0.92, 1.12) overall, 0.95 (0.80, 1.13) in men and 1.09 (0.95, 1.25) in women. Genetically determined higher FABP-4 was not associated with colorectal cancer risk (RR per FABP-4 SD was 1.10 (0.95, 1.27) overall, 1.03 (0.84, 1.26) in men and 1.21 (0.98, 1.48) in women). However, in a cis-MR approach, a statistically significant association was observed in women (RR 1.56, 1.09, 2.23) but not overall (RR 1.23, 0.97, 1.57) or in men (0.99, 0.71, 1.37). CONCLUSIONS: Taken together, these analyses provide no support for a causal role of circulating FABP-4 in the development of CRC, although the cis-MR provides some evidence for a positive association in women, which may deserve to be investigated further.Item Fine-mapping analysis including over 254,000 East Asian and European descendants identifies 136 putative colorectal cancer susceptibility genes.(Springer Nature, 2024-04-26) Chen Z; Guo X; Tao R; Huyghe JR; Law PJ; Fernandez-Rozadilla C; Ping J; Jia G; Long J; Li C; Shen Q; Xie Y; Timofeeva MN; Thomas M; Schmit SL; Díez-Obrero V; Devall M; Moratalla-Navarro F; Fernandez-Tajes J; Palles C; Sherwood K; Briggs SEW; Svinti V; Donnelly K; Farrington SM; Blackmur J; Vaughan-Shaw PG; Shu X-O; Lu Y; Broderick P; Studd J; Harrison TA; Conti DV; Schumacher FR; Melas M; Rennert G; Obón-Santacana M; Martín-Sánchez V; Oh JH; Kim J; Jee SH; Jung KJ; Kweon S-S; Shin M-H; Shin A; Ahn Y-O; Kim D-H; Oze I; Wen W; Matsuo K; Matsuda K; Tanikawa C; Ren Z; Gao Y-T; Jia W-H; Hopper JL; Jenkins MA; Win AK; Pai RK; Figueiredo JC; Haile RW; Gallinger S; Woods MO; Newcomb PA; Duggan D; Cheadle JP; Kaplan R; Kerr R; Kerr D; Kirac I; Böhm J; Mecklin J-P; Jousilahti P; Knekt P; Aaltonen LA; Rissanen H; Pukkala E; Eriksson JG; Cajuso T; Hänninen U; Kondelin J; Palin K; Tanskanen T; Renkonen-Sinisalo L; Männistö S; Albanes D; Weinstein SJ; Ruiz-Narvaez E; Palmer JR; Buchanan DD; Platz EA; Visvanathan K; Ulrich CM; Siegel E; Brezina S; Gsur A; Campbell PT; Chang-Claude J; Hoffmeister M; Brenner H; Slattery ML; Potter JD; Tsilidis KK; Schulze MB; Gunter MJ; Murphy N; Castells A; Castellví-Bel S; Moreira L; Arndt V; Shcherbina A; Bishop DT; Giles GG; Southey MC; Idos GE; McDonnell KJ; Abu-Ful Z; Greenson JK; Shulman K; Lejbkowicz F; Offit K; Su Y-R; Steinfelder R; Keku TO; van Guelpen B; Hudson TJ; Hampel H; Pearlman R; Berndt SI; Hayes RB; Martinez ME; Thomas SS; Pharoah PDP; Larsson SC; Yen Y; Lenz H-J; White E; Li L; Doheny KF; Pugh E; Shelford T; Chan AT; Cruz-Correa M; Lindblom A; Hunter DJ; Joshi AD; Schafmayer C; Scacheri PC; Kundaje A; Schoen RE; Hampe J; Stadler ZK; Vodicka P; Vodickova L; Vymetalkova V; Edlund CK; Gauderman WJ; Shibata D; Toland A; Markowitz S; Kim A; Chanock SJ; van Duijnhoven F; Feskens EJM; Sakoda LC; Gago-Dominguez M; Wolk A; Pardini B; FitzGerald LM; Lee SC; Ogino S; Bien SA; Kooperberg C; Li CI; Lin Y; Prentice R; Qu C; Bézieau S; Yamaji T; Sawada N; Iwasaki M; Le Marchand L; Wu AH; Qu C; McNeil CE; Coetzee G; Hayward C; Deary IJ; Harris SE; Theodoratou E; Reid S; Walker M; Ooi LY; Lau KS; Zhao H; Hsu L; Cai Q; Dunlop MG; Gruber SB; Houlston RS; Moreno V; Casey G; Peters U; Tomlinson I; Zheng WGenome-wide association studies (GWAS) have identified more than 200 common genetic variants independently associated with colorectal cancer (CRC) risk, but the causal variants and target genes are mostly unknown. We sought to fine-map all known CRC risk loci using GWAS data from 100,204 cases and 154,587 controls of East Asian and European ancestry. Our stepwise conditional analyses revealed 238 independent association signals of CRC risk, each with a set of credible causal variants (CCVs), of which 28 signals had a single CCV. Our cis-eQTL/mQTL and colocalization analyses using colorectal tissue-specific transcriptome and methylome data separately from 1299 and 321 individuals, along with functional genomic investigation, uncovered 136 putative CRC susceptibility genes, including 56 genes not previously reported. Analyses of single-cell RNA-seq data from colorectal tissues revealed 17 putative CRC susceptibility genes with distinct expression patterns in specific cell types. Analyses of whole exome sequencing data provided additional support for several target genes identified in this study as CRC susceptibility genes. Enrichment analyses of the 136 genes uncover pathways not previously linked to CRC risk. Our study substantially expanded association signals for CRC and provided additional insight into the biological mechanisms underlying CRC development.Item Risk factors for campylobacteriosis in Australia: outcomes of a 2018-2019 case-control study(BioMed Central Ltd, 2022-12) Cribb DM; Varrone L; Wallace RL; McLure AT; Smith JJ; Stafford RJ; Bulach DM; Selvey LA; Firestone SM; French NP; Valcanis M; Fearnley EJ; Sloan-Gardner TS; Graham T; Glass K; Kirk MDBACKGROUND: We aimed to identify risk factors for sporadic campylobacteriosis in Australia, and to compare these for Campylobacter jejuni and Campylobacter coli infections. METHODS: In a multi-jurisdictional case-control study, we recruited culture-confirmed cases of campylobacteriosis reported to state and territory health departments from February 2018 through October 2019. We recruited controls from notified influenza cases in the previous 12 months that were frequency matched to cases by age group, sex, and location. Campylobacter isolates were confirmed to species level by public health laboratories using molecular methods. We conducted backward stepwise multivariable logistic regression to identify significant risk factors. RESULTS: We recruited 571 cases of campylobacteriosis (422 C. jejuni and 84 C. coli) and 586 controls. Important risk factors for campylobacteriosis included eating undercooked chicken (adjusted odds ratio [aOR] 70, 95% CI 13-1296) or cooked chicken (aOR 1.7, 95% CI 1.1-2.8), owning a pet dog aged < 6 months (aOR 6.4, 95% CI 3.4-12), and the regular use of proton-pump inhibitors in the 4 weeks prior to illness (aOR 2.8, 95% CI 1.9-4.3). Risk factors remained similar when analysed specifically for C. jejuni infection. Unique risks for C. coli infection included eating chicken pâté (aOR 6.1, 95% CI 1.5-25) and delicatessen meats (aOR 1.8, 95% CI 1.0-3.3). Eating any chicken carried a high population attributable fraction for campylobacteriosis of 42% (95% CI 13-68), while the attributable fraction for proton-pump inhibitors was 13% (95% CI 8.3-18) and owning a pet dog aged < 6 months was 9.6% (95% CI 6.5-13). The population attributable fractions for these variables were similar when analysed by campylobacter species. Eating delicatessen meats was attributed to 31% (95% CI 0.0-54) of cases for C. coli and eating chicken pâté was attributed to 6.0% (95% CI 0.0-11). CONCLUSIONS: The main risk factor for campylobacteriosis in Australia is consumption of chicken meat. However, contact with young pet dogs may also be an important source of infection. Proton-pump inhibitors are likely to increase vulnerability to infection.Item Sports and trauma as risk factors for Motor Neurone Disease: New Zealand case-control study(John Wiley and Sons Ltd, 2022-06) Chen GX; Douwes J; van den Berg LH; Glass B; McLean D; 't Mannetje AMOBJECTIVES: To assess whether sports, physical trauma and emotional trauma are associated with motor neurone disease (MND) in a New Zealand case-control study (2013-2016). METHODS: In total, 321 MND cases and 605 population controls were interviewed collecting information on lifetime histories of playing sports, physical trauma (head injury with concussion, spine injury) and emotional trauma (14 categories). ORs were estimated using logistic regression adjusting for age, sex, ethnicity, socioeconomic status, education, smoking status, alcohol consumption and mutually adjusting for all other exposures. RESULTS: Head injury with concussion ≥3 years before diagnosis was associated with MND (OR 1.51, 95% CI: 1.09-2.09), with strongest associations for two (OR 4.01, 95% CI: 1.82-8.86), and three or more (OR 2.34, 95% CI: 1.00-5.45) head injuries. Spine injury was not associated with MND (OR 0.81, 95% CI: 0.48-1.36). Compared to never playing sports, engaging in sports throughout childhood and adulthood increased MND risk (OR 1.81, 95% CI: 1.01-3.25), as was more than 12 years playing football/soccer (OR 2.35, 95% CI: 1.19-4.65). Reporting emotionally traumatic events in more than three categories was associated with MND (OR 1.88, 95% CI: 1.17-3.03), with physical childhood abuse the only specific emotional trauma associated with MND (OR 1.82, 95% CI: 1.14-2.90), particularly for those reporting longer abuse duration (OR(5-8 years) 2.26, 95% CI: 1.14-4.49; OR(>8 years) 3.01, 95% CI: 1.18-7.70). For females, having witnessed another person being killed, seriously injured or assaulted also increased MND risk (OR 2.68, 95% CI: 1.06-6.76). CONCLUSIONS: This study adds to the evidence that repeated head injury with concussion, playing sports in general, and playing football (soccer) in particular, are associated with an increased risk of MND. Emotional trauma, that is physical abuse in childhood, may also play a role.
