Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
4 results
Search Results
Item Contrasting gene flow at different spatial scales revealed by genotyping-by-sequencing in Isocladus armatus, a massively colour polymorphic New Zealand marine isopod(PeerJ Inc., 2018-08-22) Wells SJ; Dale J; Prentis PUnderstanding how genetic diversity is maintained within populations is central to evolutionary biology. Research on colour polymorphism (CP), which typically has a genetic basis, can shed light on this issue. However, because gene flow can homogenise genetic variation, understanding population connectivity is critical in examining the maintenance of polymorphisms. In this study we assess the utility of genotyping-by-sequencing to resolve gene flow, and provide a preliminary investigation into the genetic basis of CP in Isocladus armatus, an endemic New Zealand marine isopod. Analysis of the genetic variation in 4,000 single nucleotide polymorphisms (SNPs) within and among populations and colour morphs revealed large differences in gene flow across two spatial scales. Marine isopods, which lack a pelagic larval phase, are typically assumed to exhibit greater population structuring than marine invertebrates possessing a biphasic life cycle. However, we found high gene flow rates and no genetic subdivision between two North Island populations situated 8 km apart. This suggests that I. armatus is capable of substantial dispersal along coastlines. In contrast, we identified a strong genetic disjunction between North and South Island populations. This result is similar to those reported in other New Zealand marine species, and is congruent with the presence of a geophysical barrier to dispersal down the east coast of New Zealand. We also found some support for a genetic basis to colouration evidenced by positive FST outlier tests, with two SNPs in particular showing strong association to the expression of a striped morph. Our study provides one of the first population genomic studies of a marine organism in New Zealand, and suggests that genotyping-by-sequencing can be a good alternative to more traditional investigations based on traditional markers such as microsatellites. Our study provides a foundation for further development of a highly tractable system for research on the evolutionary maintenance of CP.Item Intergenic DNA sequences from the human X chromosome reveal high rates of global gene flow(BioMed Central, 2008) Cox M; Woerner A; Wall J; Hammer MBACKGROUND:Despite intensive efforts devoted to collecting human polymorphism data, little is known about the role of gene flow in the ancestry of human populations. This is partly because most analyses have applied one of two simple models of population structure, the island model or the splitting model, which make unrealistic biological assumptions.RESULTS:Here, we analyze 98-kb of DNA sequence from 20 independently evolving intergenic regions on the X chromosome in a sample of 90 humans from six globally diverse populations. We employ an isolation-with-migration (IM) model, which assumes that populations split and subsequently exchange migrants, to independently estimate effective population sizes and migration rates. While the maximum effective size of modern humans is estimated at \~{}10,000, individual populations vary substantially in size, with African populations tending to be larger (2,300-9,000) than non-African populations (300-3,300). We estimate mean rates of bidirectional gene flow at 4.8 x 10-4/generation. Bidirectional migration rates are \~{}5-fold higher among non-African populations (1.5 x 10-3) than among African populations (2.7 x 10-4). Interestingly, because effective sizes and migration rates are inversely related in African and non-African populations, population migration rates are similar within Africa and Eurasia (e.g., global mean Nm = 2.4).CONCLUSION:We conclude that gene flow has played an important role in structuring global human populations and that migration rates should be incorporated as critical parameters in models of human demography.Item A decade of seascape genetics: Contributions to basic and applied marine connectivity(28/07/2016) Selkoe KA; D'Aloia CC; Crandall ED; Iacchei M; Liggins L; Puritz JB; Von Der Heyden S; Toonen RJSeascape genetics, a term coined in 2006, is a fast growing area of population genetics that draws on ecology, oceanography and geography to address challenges in basic understanding of marine connectivity and applications to management. We provide an accessible overview of the latest developments in seascape genetics that merge exciting new ideas from the field of marine population connectivity with statistical and technical advances in population genetics. After summarizing the historical context leading to the emergence of seascape genetics, we detail questions and methodological approaches that are evolving the discipline, highlight applications to conservation and management, and conclude with a summary of the field's transition to seascape genomics. From 100 seascape genetic studies, we assess trends in taxonomic and geographic coverage, sampling and statistical design, and dominant seascape drivers. Notably, temperature, oceanography and geography show equal prevalence of influence on spatial genetic patterns, and tests of over 20 other seascape factors suggest that a variety of forces impact connectivity at distinct spatio-temporal scales. A new level of rigor in statistical analysis is critical for disentangling multiple drivers and spurious effects. Coupled with GIS data and genomic scale sequencing methods, this rigor is taking seascape genetics beyond an initial focus on identifying correlations to hypothesis-driven insights into patterns and processes of population connectivity and adaptation. The latest studies are illuminating differences between demographic, functional and neutral genetic connectivity, and informing applications to marine reserve design, fisheries science and strategies to assess resilience to climate change and other anthropogenic impacts.Item Vicariance and dispersal across an intermittent barrier: Population genetic structure of marine animals across the Torres Strait land bridge(SPRINGER, 1/12/2011) Mirams AGK; Treml EA; Shields JL; Liggins L; Riginos CBiogeographic barriers, some transitory in duration, are likely to have been important contributing factors to modern marine biodiversity in the Indo-Pacific region. One such barrier was the Torres Strait land bridge between continental Australia and New Guinea that persisted through much of the late Pleistocene and separated Indian and Pacific Ocean taxa. Here, we examine the patterns of mitochondrial DNA diversity for marine animals with present-day distributions spanning the Torres Strait. Specifically, we investigate whether there are concordant signatures across species, consistent with either vicariance or recent colonization from either ocean basin. We survey four species of reef fishes (Apogon doederleini, Pomacentrus coelestis, Dascyllus trimaculatus, and Acanthurus triostegus) for mtDNA cytochrome oxidase 1 and control region variation and contrast these results to previous mtDNA studies in diverse marine animals with similar distributions. We find substantial genetic partitioning (estimated from F-statistics and coalescent approaches) between Indian and Pacific Ocean populations for many species, consistent with regional persistence through the late Pleistocene in both ocean basins. The species-specific estimates of genetic divergence, however, vary greatly and for reef fishes we estimate substantially different divergence times among species. It is likely that Indian and Pacific Ocean populations have been isolated for multiple glacial cycles for some species, whereas for other species genetic connections have been more recent. Regional estimates of genetic diversity and directionality of gene flow also vary among species. Thus, there is no apparent consistency among historical patterns across the Torres Strait for these co-distributed marine animals. © 2011 Springer-Verlag.
