Massey Documents by Type

Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Multi-lingual mathematical word problem generation using long short term memory networks with enhanced input features
    (European Language Resources Association (ELRA), 2020-01-01) Liyanage V; Ranathunga S
    A Mathematical Word Problem (MWP) differs from a general textual representation due to the fact that it is comprised of numerical quantities and units, in addition to text. Therefore, MWP generation should be carefully handled. When it comes to multi-lingual MWP generation, language specific morphological and syntactic features become additional constraints. Standard template-based MWP generation techniques are incapable of identifying these language specific constraints, particularly in morphologically rich yet low resource languages such as Sinhala and Tamil. This paper presents the use of a Long Short Term Memory (LSTM) network that is capable of generating elementary level MWPs, while satisfying the aforementioned constraints. Our approach feeds a combination of character embeddings, word embeddings, and Part of Speech (POS) tag embeddings to the LSTM, in which attention is provided for numerical values and units. We trained our model for three languages, English, Sinhala and Tamil using separate MWP datasets. Irrespective of the language and the type of the MWP, our model could generate accurate single sentenced and multi sentenced problems. Accuracy reported in terms of average BLEU score for English, Sinhala and Tamil languages were 22.97%, 24.49% and 20.74%, respectively.
  • Item
    A label noise filtering and label missing supplement framework based on game theory
    (Elsevier B.V. on behalf of KeAi Communications Co Ltd for the Chongqing University of Posts and Telecommunications, 2023-08-31) Liu Y; Yao R; Jia S; Wang F; Wang R; Ma R; Qi L
    Labeled data is widely used in various classification tasks. However, there is a huge challenge that labels are often added artificially. Wrong labels added by malicious users will affect the training effect of the model. The unreliability of labeled data has hindered the research. In order to solve the above problems, we propose a framework of Label Noise Filtering and Missing Label Supplement (LNFS). And we take location labels in Location-Based Social Networks (LBSN) as an example to implement our framework. For the problem of label noise filtering, we first use FastText to transform the restaurant's labels into vectors, and then based on the assumption that the label most similar to all other labels in the location is most representative. We use cosine similarity to judge and select the most representative label. For the problem of label missing, we use simple common word similarity to judge the similarity of users' comments, and then use the label of the similar restaurant to supplement the missing labels. To optimize the performance of the model, we introduce game theory into our model to simulate the game between the malicious users and the model to improve the reliability of the model. Finally, a case study is given to illustrate the effectiveness and reliability of LNFS.