Massey Documents by Type
Permanent URI for this communityhttps://mro.massey.ac.nz/handle/10179/294
Browse
2 results
Search Results
Item Large language models for ingredient substitution in food recipes using supervised fine-tuning and direct preference optimization(Elsevier B.V., 2025-09) Senath T; Athukorala K; Costa R; Ranathunga S; Kaur RIn this paper, we address the challenge of recipe personalization through ingredient substitution. We make use of Large Language Models (LLMs) to build an ingredient substitution system designed to predict plausible substitute ingredients within a given recipe context. Given that the use of LLMs for this task has been barely done, we carry out an extensive set of experiments to determine the best LLM, prompt, and the fine-tuning setups. We further experiment with methods such as multi-task learning, two-stage fine-tuning, and Direct Preference Optimization (DPO). The experiments are conducted using the publicly available Recipe1MSub corpus. The best results are produced by the Mistral7-Base LLM after fine-tuning and DPO. This result outperforms the strong baseline available for the same corpus with a Hit@1 score of 22.04. Although LLM results lag behind the baseline with respect to other metrics such as Hit@3 and Hit@10, we believe that this research represents a promising step towards enabling personalized and creative culinary experiences by utilizing LLM-based ingredient substitution.Item Multi-task multi-modality SVM for early COVID-19 Diagnosis using chest CT data.(Elsevier Ltd, 2022-01) Hu R; Gan J; Zhu X; Liu T; Shi XIn the early diagnosis of the Coronavirus disease (COVID-19), it is of great importance for either distinguishing severe cases from mild cases or predicting the conversion time that mild cases would possibly convert to severe cases. This study investigates both of them in a unified framework by exploring the problems such as slight appearance difference between mild cases and severe cases, the interpretability, the High Dimension and Low Sample Size (HDLSS) data, and the class imbalance. To this end, the proposed framework includes three steps: (1) feature extraction which first conducts the hierarchical segmentation on the chest Computed Tomography (CT) image data and then extracts multi-modality handcrafted features for each segment, aiming at capturing the slight appearance difference from different perspectives; (2) data augmentation which employs the over-sampling technique to augment the number of samples corresponding to the minority classes, aiming at investigating the class imbalance problem; and (3) joint construction of classification and regression by proposing a novel Multi-task Multi-modality Support Vector Machine (MM-SVM) method to solve the issue of the HDLSS data and achieve the interpretability. Experimental analysis on two synthetic and one real COVID-19 data set demonstrated that our proposed framework outperformed six state-of-the-art methods in terms of binary classification and regression performance.
